期刊文献+

Toward 6G Communication Networks:Terahertz Frequency Challenges and Open Research Issues 被引量:2

下载PDF
导出
摘要 Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanointernet of things.Unlike the current scenario in which megahertz bandwidth are sufficient to drive the audio and video components of user applications,the future networks of the 2030s will require bandwidths in several gigahertzes(GHz)(from tens of gigahertz to 1 terahertz[THz])to perform optimally.Based on the current radio frequency allocation chart,it is not possible to obtain such a wide contiguous radio spectrum below 90 GHz(0.09 THz).Interestingly,these contiguous blocks of radio spectrum are readily available in the higher electromagnetic spectrum,specifically in the Terahertz(THz)frequency band.The major contribution of this study is discussing the substantial issues and key features of THz waves,which include(i)key features and significance of THz frequency;(ii)recent regulatory;(iii)the most promising applications;and(iv)possible open research issues.These research topics were deeply investigated with the aim of providing a specific,synopsis,and encompassing conclusion.Thus,this article will be as a catalyst towards exploring new frontiers for future networks of the 2030s.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第3期2831-2842,共12页 计算机、材料和连续体(英文)
基金 the Research Program through the National Research Foundation of Korea(NRF-2019R1A2C1005920).
  • 相关文献

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部