期刊文献+

基于GA-BP神经网络的数控插齿机热误差建模 被引量:6

Thermal error modeling of CNC gear shaper based on GA-BP neural network
下载PDF
导出
摘要 热误差作为影响数控插齿机加工精度的重要因素之一,而目前有关插齿机的热误差补偿相关资料欠缺。提出基于GA-BP神经网络的机床热误差优化建模方法,针对插齿机减少其热误差,提高加工精度。针对神经网络算法较多,但补偿效果仍存差距,因此比较了遗传算法(GA)和BP神经网络算法,介绍GA-BP神经网络模型的具体步骤,以YKS5132DX3型数控插齿机为实验对象,获得了敏感点温度和主轴X、Y方向的热误差值,在此基础上,建立BP神经网络热误差预测模型和GA-BP网络热误差优化模型。实验结果表明:与BP神经网络热误差模型相比,GA-BP神经网络热误差模型的预测精度更高,残差变化幅度较平稳,稳健性强。 Thermal error is one of the important factors affecting the machining accuracy of CNC gear shaper, and the relevant data about thermal error compensation of gear shaper are lacking at present. In this paper, a modeling method of thermal error optimization based on GA-BP neural network is proposed to reduce the thermal error of gear shaper, and improves the machining accuracy. There are many neural network algorithms, but there is still a gap in compensation effect. Therefore, this paper compares genetic algorithm(GA) and BP neural network algorithm, and introduces the specific steps of GA-BP neural network model. To taking YKS5132 DX3 CNC gear shaper as the experimental object, the sensitive point temperature and the thermal error value of spindle XY direction are obtained. BP neural network thermal error prediction model and GA-BP network thermal error optimization model are established. Experimental results show that compared with BP neural network thermal error model, GA-BP neural network thermal error model has higher prediction accuracy, more stable residual variation range and stronger robustness.
作者 李淋 谭人铭 汪静姝 LI Lin;TAN Renming;WANG Jingshu(College of Mechanical Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第7期126-131,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家重点研发计划(2019YFB1703700) 重庆市技术创新与应用发展专项重点项目(cstc2019jscx-mbdxX0045) 重庆市技术创新与应用发展专项重点项目(cstc2019jscx-mbdxX0016)。
关键词 BP神经网络 GA-BP神经网络 数控插齿机 稳健性 BP neural network GA-BP neural network CNC gear shaper robustness
  • 相关文献

参考文献1

二级参考文献66

  • 1PEKLENIK J, JERELE A. Some basic relationships foridentification of the machining process[J]. CIRPAnnals-Manufacturing Technology, 1992,41(1): 155-159.
  • 2PUSH A V. Prediction of thermal displacement in spindleunits[J]. Soviet Engineering Research, 1985,5(5): 57-62.
  • 3BRYAN J. International status of thermal error research(1990)[J]. CIRP Annals-Manufacturing Technology,1990, 39(2): 645-656.
  • 4VELDHUIS S C, ELBESTAWI M A. A strategy for thecompensation of errors in five-axis machining[J]. CIRPAnnals-Manufacturing Technology, 1995,44(1): 373-377.
  • 5CHEN J S, YUAN J,NI Jun. Thermal error modelling forreal-time error compensation[J]. International Journal ofAdvanced Manufacturing Technology,1996,12(4):266-275.
  • 6CHEN J S. A study of thermally induced machine toolerrors in real cutting conditons[J]. International Journal ofMachine Tools and Manufacture, 1996, 36(12): 1401-1411.
  • 7CHEN J S. Neural network-based modelling and errorcompensation of thermally-induced spindle errors[J].International Journal of Advanced ManufacturingTechnology, 1996, 12(4): 303-308.
  • 8LI Xiaoli. Real-time prediction of workpiece errors for aCNC turning centre, part 2: Modelling and estimation ofthermally induced errors[J]. International Journal ofAdvanced Manufacturing Technology, 2001,17(9):654-658.
  • 9YANG S, YUAN J, NI Jun. The improvement of thermalerror modeling and compensation on machine tools byCMAC neural network[J]. International Journal ofMachine Tools and Manufacture, 1996, 36(4): 527-537.
  • 10MIZE C D, ZIEGERT J C. Neural network thermal errorcompensation of a machining center[J]. PrecisionEngineering, 2000, 24(4): 338-346.

共引文献75

同被引文献53

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部