期刊文献+

基于用户-评论-商户关系的虚假用户识别研究:用户偏差分析的视角 被引量:3

Identifying Fake Accounts with User-Review-Shop Relationship and User Deviation Analysis
原文传递
导出
摘要 【目的】以用户-评论-商户虚假度增强关系为基础,提出一种基于用户偏差的虚假度迭代修正模型(URS-FDIRM),以有效识别虚假用户。【方法】分别采用均值法、JS散度和KL散度三种方法测度用户内容偏差和用户行为偏差,基于马蜂窝平台的实验数据构建URS-FDIRM模型识别虚假用户。【结果】三种方法均能有效测度用户的内容偏差和行为偏差,其中,采用均值法的URS-FDIRM模型对虚假用户识别效果最佳,F1值达92.57%。【局限】该方法主要结合常规偏差度量方法提取用户偏差指标,未探索包括更多用户行为特征的偏差度量方法,一定程度影响了虚假用户识别效果。【结论】考虑用户-评论之间的内容偏差和商户-用户之间的行为偏差,能捕获更多的用户虚假度线索,揭示用户-评论-商户三者虚假度的相互关系,为异常用户行为监测提供参考。 [Objective] Based on the user-review-shop(URS) and the fake degree relationship, this paper proposes a model based on user deviation, aiming to effectively identify fake accounts. [Methods] First, we measured the user’s deviations of contents and behaviors with the means method, JS divergence and KL divergence respectively. Then, we constructed the URS-FDIRM model to identify fake users with experimental data from mafengwo. com. [Results] The proposed models effectively measured the user’s deviations of contents and behaviors. The F1 value of URS-FDIRM model reached 92.57%. [Limitations] This method mainly uses the conventional measurements to extract the deviation index and did not include more deviation measurements with user behaviors. [Conclusions] The proposed method could help us reveal the false relationship among users,reviews and shops, and monitor abnormal user behaviors.
作者 孟园 王悦 Meng Yuan;Wang Yue(School of Statistics and Information,Shanghai University of International Business and Economics,Shanghai 201620,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2022年第6期55-70,共16页 Data Analysis and Knowledge Discovery
基金 上海市哲学社会科学规划课题一般项目(项目编号:2020BGL009) 上海对外经贸大学研究生科研创新培育项目(项目编号:2021-030800-05)的研究成果之一。
关键词 用户偏差 增强关系 虚假用户识别 均值偏差 虚假度 User Deviation Reinforcing Relationship Fake User Identification Mean Deviation Fake Degree
  • 相关文献

参考文献8

二级参考文献83

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190.
  • 4谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157.
  • 5Feng S,Banerjee R,Chai Y J. Syntactic stylometry for deception detection. Proceedings of the 50^th Annual Meeting of the Association for Oomputational I.inguistics, 2012 : 8- 14.
  • 6Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. Proceedings of the 19^th ACM International Conference on Information and Knowledge Management. 2010 : 1549- 1552.
  • 7Lira E P,Nguyen V A,Jindal N,et ag. Detecting product review spammers using rating behaviors. Proceedings of the 19^th ACM International Con{erence on Information and Knowledge Man agement, New York, USA : 2010.
  • 8Wang G, Xie S H, Liu B, et al. Identify online store review spammers via social review graph. ACM Transactions on Intelligent Systems and Technology(TIST) ,2012,3(4).
  • 9Xie S H, Wang G, Lin S Y, et al. Review spam detection via temporal pattern discovery. Proceedings of the 18^th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012: 823-831.
  • 10Lappas T. Fake reviews:The malicious perspective. Proceedings of the 17^th International conference on Applications of Natural Language Processing to In- formation Systems, 2012 : 23-34.

共引文献79

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部