期刊文献+

Prediction of Extremist Behaviour and Suicide Bombing from Terrorism Contents Using Supervised Learning

下载PDF
导出
摘要 This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第3期4411-4428,共18页 计算机、材料和连续体(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部