期刊文献+

Deep Learning Based Automated Detection of Diseases from Apple Leaf Images 被引量:2

下载PDF
导出
摘要 In Agriculture Sciences, detection of diseases is one of the mostchallenging tasks. The mis-interpretations of plant diseases often lead towrong pesticide selection, resulting in damage of crops. Hence, the automaticrecognition of the diseases at earlier stages is important as well as economicalfor better quality and quantity of fruits. Computer aided detection (CAD)has proven as a supportive tool for disease detection and classification, thusallowing the identification of diseases and reducing the rate of degradationof fruit quality. In this research work, a model based on convolutional neuralnetwork with 19 convolutional layers has been proposed for effective andaccurate classification of Marsonina Coronaria and Apple Scab diseases fromapple leaves. For this, a database of 50,000 images has been acquired bycollecting images of leaves from apple farms of Himachal Pradesh (H.P)and Uttarakhand (India). An augmentation technique has been performedon the dataset to increase the number of images for increasing the accuracy.The performance analysis of the proposed model has been compared with thenew two Convolutional Neural Network (CNN) models having 8 and 9 layersrespectively. The proposed model has also been compared with the standardmachine learning classifiers like support vector machine, k-Nearest Neighbour, Random Forest and Logistic Regression models. From experimentalresults, it has been observed that the proposed model has outperformed theother CNN based models and machine learning models with an accuracy of99.2%.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第4期1849-1866,共18页 计算机、材料和连续体(英文)
基金 This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/73),Taif University,Taif,Saudi Arabia.
  • 相关文献

参考文献2

二级参考文献10

共引文献50

同被引文献25

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部