期刊文献+

偏流条件下潮流能水轮机的熵产特性评估 被引量:7

Entropy production evaluation of a tidal turbine under yawed flow condition
下载PDF
导出
摘要 部署在开阔水域的潮流能水平轴水轮机经常不可避免处于偏流中并造成一定的负面影响,为了研究其在偏流条件下的熵产及水力特点,通过求解雷诺平均(RANS)方程并结合熵产理论对一水平轴潮流能水轮机进行了三维数值模拟研究。结果表明,随着偏流角的增大,涡轮机的输出功率及推力逐渐减小,最高点所对应的尖速比(TSR)逐渐向低位移动,同时输出功率及推力的波动幅度变大。在相同的偏流角下,熵产随TSR的增大而增大。在不同的偏流角下,熵产在较低的TSR下随偏流角的增大而减小,而在较高的TSR下随偏流角的增大而增大。增加偏流角同样也会导致熵产波动幅度的变大。此外,流场分析表明偏流角决定了下游尾迹的偏转方向并显著改变了尾迹形状。大部分的熵产出现在水轮机的叶尖和轮毂后方,这是因为此处形成了较大范围的流动分离和涡流,这也是导致水轮机出现高熵产的主要诱因。研究结果揭示了水平轴水轮机在偏流条件下的熵产和水力特点并准确定位了熵产集中区域,为水平轴水轮机的优化设计提供了一定的参考依据。 Tidal horizontal-axis turbines deployed in open water are often inevitably subject to yawed flow conditions,which can cause negative effects on their performance.The detailed hydraulic performance of such a turbine is investigated by numerically solving the Reynolds-averaged Navier-Stokes equations and a shear-stress-transport turbulence model;its simulated entropy production characteristics are examined.The results show that as the inflow yaw angle increases,the power and thrust are reduced and the optimum tip speed ratio(TSR)declines,while the power and thrust fluctuation amplitudes are increased.At a fixed yaw angle,entropy production increases with TSR;at an increasing yaw,it decreases at low TSRs and then grows at high TSRs.A larger yaw also leads to larger entropy production fluctuation amplitudes.In addition,a flow field analysis reveals that the yaw angle determines the downstream wake deflection direction and alters the wake shape significantly.Most of the entropy production loss takes place behind the blade tip and hub where large scale flow separation and vortices occur;this is naturally the main origin of high entropy production in the turbine.This study demonstrates the hydraulic characteristics,the mechanism of entropy production,and the locations of entropy production in a horizontal-axis turbine,laying a basis for its optimal design.
作者 宋科 杨邦成 段维华 SONG Ke;YANG Bangcheng;DUAN Weihua(School of Mechanical and Electrical Engineering,Kunming University,Kunming 650214,China;Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China)
出处 《水力发电学报》 CSCD 北大核心 2022年第8期12-19,共8页 Journal of Hydroelectric Engineering
基金 云南省教育厅科学研究基金项目(2022J0637) 云南省基础研究专项(202201AU070028) 昆明学院人才引进项目(YJL20023)。
关键词 潮流能 水平轴水轮机 偏流 水力性能 熵产 tidal power horizontal axis turbine yawed flow hydraulic performance entropy production
  • 相关文献

参考文献10

二级参考文献68

  • 1王世明,李淼淼,李泽宇,田卡.国际潮流能利用技术发展综述[J].船舶工程,2020,42(S01):23-28. 被引量:13
  • 2YIN JunLian1, LIU JinTao1, WANG LeQin1, JIAO Lei1, WU DaZhuan1 & QIN DaQing2 1 Institute of Chemical Machinery, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China,2 Harbin Institute of Large Electrical Machinery, Harbin 150001, China.Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode[J].Science China(Technological Sciences),2010,53(12):3302-3309. 被引量:17
  • 3GONG RuZhi,WANG HongJie,CHEN LiXia,LI DeYou,ZHANG HaoChun,WEI XianZhu.Application of entropy production theory to hydro-turbine hydraulic analysis[J].Science China(Technological Sciences),2013,56(7):1636-1643. 被引量:16
  • 4纪兵兵,陈金瓶.ANSYSICEMCFD网格划分技术实例详解[M].北京:中国水利水电出版社.2012,206-243.
  • 5Barrios I M, Murphy J, Lynch K, et al. Methodology for assessing multiple combined wind and ocean energy technologies as part of the EU FP7 MARINA Platform Project [C]//ICOE Proceedings, Dublin, Ireland, Oct. 2012.
  • 6Harris, A. Taming the tides [Energy Tidal] [J]. Engineering & Technology, 2013, 7(12): 38-41.
  • 7Ian Stokes. Hotspots: Scotland and Fukushima [J]. Renewable Energy Focus, 2013, 14(2).10-11.
  • 8Castellucei V, Waters R, Eriksson M, et al. Tidal effect compensation system for point absorbing wave energy converters [J]. Renewable Energy, 2013, (51): 247-254.
  • 9Kludemarm, Koschinski S, Minizing Underwater Noise from Offshore Wind Farm Construction [C]//3rd International Conference on Progress in Marine Conservation in Europe 2012, stralsund Germany June 18-22.
  • 10Ulrich L. 2012 top 10 tech cars [J]. Spectrum, IEEE, 2012, 49 (4): 44-55.

共引文献64

同被引文献66

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部