期刊文献+

基于信息物理融合和XGBoost-MPGA算法的燃煤电厂脱硫系统运行优化 被引量:3

Operation Optimization of Flue Gas Desulfurization System in Coal-fired Power Plant Based on Cyber-physical Fusion and XGBoost-MPGA Algorithm
原文传递
导出
摘要 针对脱硫系统运行优化过程中脱硫效率回归模型精度不够,及运行优化方案在实际运行中难以有效执行的问题。该文提出一种基于信息物理融合和XGBoost-MPGA的脱硫系统运行优化方法。通过构建XGBoost脱硫效率回归模型作为脱硫变动成本函数的变量,利用MPGA寻找脱硫变动成本最低时对应的脱硫效率,然后逆向求解出脱硫效率回归模型中液气比、吸收塔浆液pH值、吸收塔液位优化值。通过实例分析表明,XGBoost-MPGA相比BP神经网络、随机森林和GBRT回归模型具有更好的预测性能,且与XGBoost-SGA比较,在脱硫变动成本极值寻优过程具有更好的稳定性和收敛性。并通过信息物理融合方法消除了脱硫物理设备在运行优化操作后对脱硫变动成本信息的影响,提高了运行优化操作方案的可靠性和经济性。 Given the inaccuracy of the regression model of desulphurization efficiency in the operation optimization of desulphurization system,and the difficulty of effective operation of operation optimization scheme in actual operation,his paper presented an optimization method for desulfurization system operation based on cyber-physical fusion and XGBoost-multigroup parallel genetic algorithm.By constructing the XGBoost desulfurization efficiency regression model as the variable of desulfurization variable cost function,MPGA was used to find the corresponding desulfurization efficiency when the variable cost of desulfurization was the lowest,and then the optimal values of the liquid-gas ratio,pH value of absorber slurry and absorber liquid level in the regression model of desulfurization efficiency were obtained.The example analysis show that XGBoost-MPGA had better prediction performance than BP neural network,Random Forest,and GBRT regression model,and had better stability and convergence in the optimization process of desulfurization variable cost extreme value compared with XGBoost-SGA.In addition,the cyber-physical fusion method eliminates the influence of desulfurization physical equipment on the variable cost information of desulfurization after the operation optimization operation and improves the reliability and economy of the operation optimization operation plan.
作者 肖祥武 李志金 舒畅 周宏贵 王鹏浩 XIAO Xiangwu;LI Zhijin;SHU Chang;ZHOU Honggui;WANG Penghao(College of Electrical and Information Engineering Hunan University,Changsha 410082,Hunan Province,China;Hunan Datang Xianyi Technology Co.,Ltd.,Changsha 410002,Hunan Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2022年第14期5202-5211,共10页 Proceedings of the CSEE
关键词 脱硫系统 运行优化 信息物理融合 XGBoost 多种群遗传算法 desulfurization system peration optimization cyber-physical fusion XGBoost MPGA
  • 相关文献

参考文献12

二级参考文献140

共引文献446

同被引文献51

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部