期刊文献+

机载雷达深度展开空时自适应处理方法 被引量:5

Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar
下载PDF
导出
摘要 稀疏恢复空时自适应处理(SR-STAP)方法能够利用少量训练距离单元实现对机载雷达杂波的有效抑制。然而,现有SR-STAP方法均基于模型驱动实现,存在着参数设置困难、运算复杂度高等问题。针对这些问题,该文将基于模型驱动的SR方法和基于数据驱动的深度学习方法相结合,首次将深度展开(DU)引入到机载雷达杂波抑制和目标检测之中。首先,建立了阵列误差(AE)条件下的杂波空时谱和阵列误差参数联合估计模型,并利用交替方向乘子法(ADMM)进行求解;接着,将ADMM算法展开为深度神经网络AE-ADMM-Net,利用充足完备的数据集对其迭代参数进行优化;最后,利用训练后的AE-ADMM-Net对训练距离单元数据进行处理,快速获得杂波空时谱和阵列误差参数的准确估计。仿真结果表明:与典型SR-STAP方法相比,该文所提出的DU-STAP方法能够在保持较低运算复杂度的同时提高杂波抑制性能。 The Sparse Recovery Space-Time Adaptive Processing(SR-STAP)method can use a small number of training range cells to effectively suppress the clutter of airborne radar.The SR-STAP approach may successfully eliminate airborne radar clutter using a limited number of training range cells.However,present SR-STAP approaches are all model-driven,limiting their practical applicability due to parameter adjustment difficulties and high computational cost.To address these problems,this study,for the first time,introduces the Deep Unfolding/Unrolling(DU)method to airborne radar clutter reduction and target recognition by merging the model-driven SR method and the data-driven deep learning method.Firstly,a combined estimation model for clutter space-time spectrum and Array Error(AE)parameters is established and solved using the Alternating Direction Method of Multipliers(ADMM)algorithm.Secondly,the ADMM algorithm is unfolded to a deep neural network,named AE-ADMM-Net,to optimize all iteration parameters using a complete training dataset.Finally,the training range cell data is processed by the trained AE-ADMM-Net,jointly estimating the clutter space-time spectrum and the radar AE parameters efficiently and accurately.Simulation results show that the proposed DU-STAP method can achieve higher clutter suppression performance with lower computational cost compared to typical SR-STAP methods.
作者 朱晗归 冯为可 冯存前 邹帛 路复宇 ZHU Hangui;FENG Weike;FENG Cunqian;ZOU Bo;LU Fuyu(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China)
出处 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第4期676-691,共16页 Journal of Radars
基金 国家自然科学基金(62001507),陕西省高校科协青年人才托举计划(20210106)。
关键词 空时自适应处理 稀疏恢复 深度学习 深度展开 阵列误差 Space-Time Adaptive Processing(STAP) Sparse recovery Deep learning Deep unfolding/unrolling(DU) Array error
  • 相关文献

参考文献5

二级参考文献36

  • 1魏进武,王永良,陈建文.双基地机载预警雷达空时自适应处理方法[J].电子学报,2001,29(z1):1936-1939. 被引量:7
  • 2保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时-空二维自适应滤波[J].电子学报,1993,21(9):1-7. 被引量:92
  • 3左群声,林幼权,王友林.天基预警雷达探测系统的发展[J].电子科学技术评论,2004(3):20-22. 被引量:3
  • 4谢文冲,王永良.基于CMT技术的非正侧面阵机载雷达杂波抑制方法研究[J].电子学报,2007,35(3):441-444. 被引量:11
  • 5Klemm R. Space-time Adaptive Processing in Principles and Appfications [M]. London: IEE, 2002.65 - 75.
  • 6Reed I S,Mallett J D,Brennan L E. Rapid convergence rate in adaptive arrays [ J]. 1F.F.E Transactions on Aerospace and Elec- tronic Systems, 1974,10(6 ) :853 - 863.
  • 7SUN Ke, ZHANG Hao, LI Gang, MENG Hua-dong, WANG Xi-qin. A novel STAP algorithm using sparse recovery tech- nique [ A ]. IEEE International Conference on Geoscieuce & Remote Sensing Symposium [C]. Cape Town: IEEE, 2009. 336 - 339.
  • 8Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[ J]. IEEE Transactions on Information Theory,2006,52( 1 ) : 6 - 18.
  • 9Boyd S P. Matlab Software for Disciplined Convex Program- ming [ CP]. http://www, stanford, edu/~ boyd/cvx, 2010.
  • 10Titi G W,Marshall D F. The ARPA/NAVY mountaintop pro- gram: adaptive signal processing for airborne early warning radar [ A]. 1EEE International Conference on Acoustics, Speech and Signal Processing [ C]. Atlanta: 1EF.E, 1996.1165 - 1168.

共引文献77

同被引文献39

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部