期刊文献+

Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition 被引量:2

原文传递
导出
摘要 Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process.We report a fused in sarcoma protein(FUS)-derived low complexity(LC)sequence that undergoes LLPS in the presence of metal ions.The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain(the residues 1–165 in QGSY-rich segment)of FUS.Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix.We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates.By taking advantage of competitive binding using chelators,we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets,and developing a potential approach towards controllable biological encapsulation/release.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第9期1043-1049,共7页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos. 22072159 and 22172007) the Fundamental Research Funds for the Central Universities(No. buctrc202015)
  • 相关文献

参考文献3

二级参考文献1

共引文献12

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部