期刊文献+

基于RSVP的面向不良信息检测人机协作系统研究 被引量:3

Research on human-machine cooperation system for bad information detection based on RSVP
原文传递
导出
摘要 针对复杂的环境背景下不良信息的快速准确检测问题,提出了基于快速序列视觉呈现(rapid serial visual presentation,RSVP)的面向不良信息检测人机协作系统。首先利用快速佩戴便携式采集系统采集了12名受试者的脑电数据;然后采用Mallat算法提取较低维度的时频特征,使用人工神经网络(ANN)和支持向量机(SVM)两种模型分类对比;最后在训练集中引入不同次数的叠加平均数据以改善模型的分类性能。实验结果表明,在含有3个目标的60张图像中平均正确输出至少2张目标,AUC值达到了0.9。该系统在小批量数据集、环境变化复杂的不良图像信息检测中有着良好的性能,相较于人工检测提高了效率。 Aiming at the problem of fast and accurate detection of bad information under complex environment background,a human-machine collaboration system for bad information detection based on rapid serial visual presentation(RSVP)is proposed.Firstly,using the fast-wearing portable acquisition system collected the EEG data of 12 subjects;then the Mallat algorithm was used to extract the lower-dimensional time-frequency features of the EEG data,and EEG signal classification uses artificial neural network(ANN)and support vector machine(SVM).Finally,different times of superimposed average data are introduced in the training set to improve the classification performance of the model.The experimental results show that at least 2 targets are correctly output on average in 60 images containing 3 targets,and the AUC value reaches 0.9.The system has good performance in the detection of small batch data sets and bad image information with complex environmental changes,and has improved efficiency compared with manual detection.
作者 李解放 徐建军 孙铭阳 黄涌 范方朝 谢城壁 Li Jiefang;Xu Jianjun;Sun Mingyang;Huang Yong;Fan Fangzhao;Xie Chengbi(School of Electrical Engineering,Beijing Jiaotong University,Bejing 100044,China;Blue Sensing(Beijing)Technology Co.,Ltd.,Bejing 100085,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第6期22-29,共8页 Journal of Electronic Measurement and Instrumentation
关键词 脑机接口 干电极 RSVP 图像鉴黄 人机协作 brain-computer interface dry electrode RSVP pornographic images identification human-machine collaboration
  • 相关文献

参考文献7

二级参考文献22

共引文献28

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部