摘要
针对磁性微液滴制备不稳定问题,通过制备新型微流控芯片,以聚苯乙烯磺酸-四氧化三铁(PSSA-Fe_(3)O_(4))为磁性材料,研究微流控芯片不同工艺参数对制备的磁性微液滴粒径的影响规律,包括十字型流道中溶液流速、微流道尺寸和溶液内表面活性剂质量分数对磁性微液滴粒径的影响。以PSSA-Fe_(3)O_(4)磁性材料为基础的磁性微液滴成型研究得出:调节两相流速可将所制备的磁性微液滴粒径精确控制在28~72μm内;减小流道剪切口分散相进、出口端尺寸可将所制备的磁性微液滴粒径控制在23~113μm内;增加连续相中表面活性剂质量分数可将所制备的磁性微液滴粒径控制在28~83μm内。研究结果有助于利用微流控芯片制备出粒径精确可控、均匀稳定的PSSA-Fe_(3)O_(4)磁性微液滴,可为磁性微液滴精准操控等提供技术支撑。
For the problem of unstable magnetic microdroplets preparation,a new microfluidic chip was fabricated with polystyrene sulfonic acid(PSSA)-Fe_(3)O_(4) as the magnetic material to investigate the influence law of different process parameters of the microfluidic chip on the particle size of the fabricated magnetic microdroplets,including the effects of the solution flow rate in the cross-shaped channel,microchannel size and surfactant mass fraction on the particle size of magnetic microdroplets.Though the formation research of magnetic microdroplets based on the magnetic material PSSA-Fe_(3)O_(4),it is obtained that the particle size of the fabricated magnetic microdroplets can be accurately controlled in the range of 28-72μm by adjusting the two-phase flow rate;reducing the particle sizes of the inlet and outlet of the dispersed phase at the shear port of the flow channel,the particle size of the fabricated magnetic microdroplets can be controlled in the range of 23-113μm;increasing the surfactant mass fraction in the continuous phase,the particle size of the fabricated magnetic microdroplets can be controlled in the range of 28-83μm.The research results are helpful for utilizing microfluidic chips to fabricate uniform and stable PSSA-Fe_(3)O_(4) magnetic microdroplets with precisely controlled particle size,and can provide technical support for precise manipulation of magnetic microdroplets.
作者
李旺明
邱京江
张玉东
李静
徐献忠
卫荣汉
Li Wangming;Qiu Jingjiang;Zhang Yudong;Li Jing;Xu Xianzhong;Wei Zonhan(School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450001,China;Institute of Intelligent Sensing,Zhengzhou University,Zhengzhou 450001,China;State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China)
出处
《微纳电子技术》
CAS
北大核心
2022年第7期710-717,共8页
Micronanoelectronic Technology
基金
河南省高等学校重点科研资助项目(20A460022)
流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-202014)。