期刊文献+

基于DTW-KNN的机械通气无效吸气努力检测

DETECTION OF INEFFECTIVE INSPIRATORY EFFORT DURING EXPIRATORY IN MECHANICAL VENTILATION BASED ON DTW-KNN
下载PDF
导出
摘要 无效吸气努力(Ineffective Inspiratory Effort during Expiration,IEE)是使用机械通气抢救危重病人过程中最常见的一种人机不同步问题。针对该问题缺乏检测手段的现状,提出基于机械通气波形,采用K最邻近法(K-Nearest Neighbors,KNN)结合动态时间规整(Dynamic time warping,DTW)实现IEE检测。在临床采集的数据集上进行测试发现,基于DTW-KNN的方法得到96.5%的特异性和97.2%的灵敏度,优于传统的基于规则的方法和机器学习方法。研究表明,该方法有望用于临床IEE检测,提示医护人员调整呼吸机参数设置,改善病人与呼吸机的同步性,优化重症呼吸治疗。 Ineffective inspiratory effort during expiration(IEE)is one of the most common types of patient-ventilator asynchrony in treating critical ill patients using mechanical ventilation(MV).To solve the problem of lacking methods to detect IEE,an algorithm based on dynamic time warping(DTW)and K-Nearest Neighbors(KNN)was proposed for IEE detection based on the MV waveforms.It was tested on the dataset collected from clinic.It is found that the proposed method obtained a sensitivity of 97.2%and a specificity of 96.5%,which is superior to the traditional rule-based methods and machine learning methods.The results indicate that the proposed approach is promising to be applied in clinic to detect IEE to prompt the medical staff to adjust the ventilator parameter settings so as to improve the patient-ventilator interaction and optimize the critical respiratory care.
作者 潘清 龚强 陆飞 方路平 葛慧青 Pan Qing;Gong Qiang;Lu Fei;Fang Luping;Ge Huiqing(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,Zhejiang,China;Department of Respiratory Care,Sir Run Run Shaw Hospital,School of Medicine,Zhejiang University,Hangzhou 310016,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2022年第8期331-337,共7页 Computer Applications and Software
基金 浙江省自然科学基金项目(LY19H010005) 浙江省教育厅一般科研项目(Y201636066)。
关键词 机械通气 无效吸气努力 K-最邻近法 动态时间规整 Mechanical ventilation Ineffective inspiratory effort during expiration K-nearest neighbor Dynamic time warping
  • 相关文献

参考文献3

二级参考文献33

  • 1王黎梅,王小玲,步惠琴,张美琪,顾小红,王黎恩,童武华,殳儆.机械通气患者转运途中的监护[J].中国实用护理杂志(下旬版),2004,20(10):14-15. 被引量:6
  • 2吴勤.护理人员应加强临床医学工程有关知识培训[J].西南军医,2005,7(3):82-82. 被引量:4
  • 3戴新娟.全面质量管理(TQM)在护理质量管理中的应用[J].实用临床医药杂志,2005,9(10):65-67. 被引量:8
  • 4张学龙,黄勇,程海凭.日本临床医学工程师制度提供的启示[J].医疗设备信息,2007,22(1):1-4. 被引量:23
  • 5Denise M. Komiewicz, Tobey Clark, Yadin David. A National Online Survey on the Effectiveness of Clinical Alarms[J]. Am J Crit Care, 2008, 17(1): 36.
  • 6Evans R S, Johnson K V, Flint V B, et al. Enhanced notification of critical ventilator events[J]. J Am Med Inform Assoc, 2005, 12(6): 589.
  • 7Stelfox H T, Bates D W, Redelmeier D A. Safety of patients isolated for infection control[J]. JAMA, 2003, 290: 1899.
  • 8Wu L Z, Oviatt S L, Cohen P R. Multimodal integration-a statis- tical view[ J]. IEEE Transactions on Multimedia, 1999, 1 (4) : 334-341.
  • 9Lanckriet G R G, Christianini N, Bartlett P L, et al. Learning the kernel matrix with semidefinite programming [ J ]. Journal of Machine Learning Research, 2004, 5 : 27-72.
  • 10Scholkopf B, Smola A J. Learning with Keme|s : Support Vector Machines, Regularization, Optimization and Beyond [ M ]. Cam- bridge, MA: MIT Press, 2002.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部