期刊文献+

锂电池非线性退化模型和多目标储能优化 被引量:1

Nonlinear Degradation Model and Multi-objective Optimization Method for Energy Storage of Lithium-ion Battery
原文传递
导出
摘要 针对锂电池储能退化行为的描述和建模存在的缺陷,提出基于市场收益的锂电池多目标储能优化方法。该方法同时考虑电流大小和充放电状态对锂电池退化性能的影响,将非线性退化行为转化为嵌入式整数线性编码(MILP),实现锂电池能量调度策略的最优化和收益最大化。提出的分段拟合函数和两阶时间分解技术,允许在有限的计算时间内处理更多的锂电池充放电数据,并实现储能最优策略。实验结果表明,所提出的多目标优化策略和非线性退化模型,能够准确地描述锂电池的非线性退化行为。 Aiming at the defects in the description and modeling of energy storage degradation behavior of lithium-ion battery,a multi-objective optimization method for energy storage of lithium-ion battery based on market revenue is proposed in this paper.The influence of current and charge/discharge state on the degradation performance of lithium-ion battery is considered in this method.The nonlinear degradation behavior is transformed into mixed-integer linear program(MILP) to optimize the energy scheduling strategy of lithium-ion battery and maximize the revenue.The proposed piecewise fitting function and two-order time decomposition technique allow more charge and discharge data of lithium-ion battery to be processed within limited computational time and achieve the optimal strategy for energy storage.The experimental results show that the multi-objective optimization strategy and nonlinear degradation model can describe the nonlinear degradation behavior of lithium-ion battery accurately.
作者 汪秋婷 戚伟 WANG Qiu-ting;QI Wei(School of Information and Electrical Engineering,Zhejiang University City College,Hangzhou 310015,China)
出处 《控制工程》 CSCD 北大核心 2022年第8期1360-1363,1369,共5页 Control Engineering of China
关键词 退化模型 非线性 MILP 锂电池 多目标优化 Degradation model nonlinear MILP lithium-ion battery multiple-objective optimization
  • 相关文献

参考文献6

二级参考文献35

  • 1陈启军,张宏辉,王月娟,陈辉堂.一种简单的机器人鲁棒自适应轨迹跟踪控制算法[J].华中科技大学学报(自然科学版),2004,32(S1):52-54. 被引量:5
  • 2高连华,孙伟.变异系数在可靠性中的应用[J].装甲兵工程学院学报,2004,18(4):5-8. 被引量:21
  • 3王金敏,崔奇,初楠.运用三次样条曲线拟合机器人运动路径[J].机械设计,2005,22(7):44-46. 被引量:4
  • 4ZHANG J L, JAYLEE. A review on prognostics and health moni-toring of Li-ion battery[J]. Journal of Power Sources, 2011 (3): 101-106.
  • 5WANG D, MIAO Q, PECHT M. Prognostics of lithium-ion batter- ies based on relevance vectors and a conditional three-parameter capacity degradation model [J]. Journal of Power Sources, 2013, 239: 253-264.
  • 6HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithi- um-ion batteries based on Dempster-Shafer theory and the Bayes- ian Monte Carlo method[J]. Journal of Power Sources, 2011, 196: 10314-10321.
  • 7SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for bat- tery health monitoring using a bayesian framework[J]. IEEE Trans- actions on Instrumentation and Measurement, 2009, 58(2): 291- 297.
  • 8WRIGHT R B, MOTLOCH C G, BELT J R, et al. Calendar and cy- cle-life studies of advanced technology development program gen- eration 1 lithium-ion batteries[J]. J Power Sources, 2002, 110: 445- 470.
  • 9CHRISTOPHERSON J P, BLOOM I, EDWARD V T. Advanced technology development program for lithium-ion batteries: gen 2 performance evaluation final report [M]. Washington: US Depart- ment of Energy, 2006.
  • 10RAMADASS P, HARAN B, WHITE R, et al. Mathematical model- ing of the capacity fade of Li-ion cells[J]. J Power Sources, 2003, 123: 230-240.

共引文献45

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部