期刊文献+

复合固体推进剂与电阻式温度传感器一体化增材制造技术 被引量:1

Integrated Additive Manufacturing Technology of Composite Solid Propellant and Resistive Temperature Sensor
下载PDF
导出
摘要 与传统浇注方法相比,利用增材制造(又称“3D打印”)技术制造的复合固体推进剂具有药柱构形不受模具限制,配方、性能连续可调等一系列技术优势。为提升打印效果,对基于光固化成型的复合固体推进剂打印配方及技术参数进行了研究,并对打印的推进剂样品进行了性能测试。此外,通过将电阻式温度传感器集成到打印推进剂样品中,实现了复合固体推进剂与电阻式温度传感器的一体化增材制造,并对不同温度下温度传感器的电阻值进行了检测。结果表明,在固含量为83%的固体推进剂浆料中添加不低于3%的紫外光(UV)固化树脂即可实现较好的预固化效果。对于固含量77%和80%的浆料,可以用直径为0.26 mm的针头挤出,而当固含量达到81%及以上时,需选择直径为0.5 mm的针头。当固含量为81%时,得到的推进剂样品维形性较好,外观无明显缺陷,但电子计算机断层扫描(CT)结果显示样品内部存在片状孔隙。20℃时,样品拉伸强度和断裂伸长率分别为0.94 MPa和15.63%;60℃时则分别为0.70 MPa和14.63%。与传统浇注推进剂相比,拉伸强度无明显变化,但断裂伸长率降低。电阻式温度传感器材料与推进剂间的结合强度为0.21 MPa,结合效果良好,且在测试温度范围(20~60℃)内传感器电阻随温度呈线性变化,展现出良好的温度监测能力。 Compared with traditional casting method,composite solid propellant manufactured by additive manufacturing(com-monly known as“3D printing”)technology exhibits a series of technical advantages,such as arbitrary grain configuration without mold limitation and continuously controllable formulation as well as performance.In order to improve printing effect,printing formulation and technical parameters of composite solid propellant based on light-curing molding were studied,and the performance of printed propellant samples was evaluated.In addition,comprehensive additive manufacturing of composite solid propellant and resistive temperature sensor was achieved by integrating resistive temperature sensor into the printed propellant samples,and the resistance values of temperature sensor at different temperatures were examined.The results show that solid propellant slurry with 83%solid content displays a good pre-curing effect by adding no less than 3%ultraviolet(UV)-curable resin.The slurry with 77%or 80%solid content can be extruded through a 0.26 mm diameter needle,while solid content reaching 81%or above requires a 0.5 mm diameter needle.The printed propellant sample comprising 81%solid content possesses good dimensional stability and unconspicuous appearance defects,but computed tomography(CT)results reveal the existence of lamellar pores inside the sample.The tensile strength and elongation at break of printed propellant sample are equal to 0.94 MPa and 15.63%at 20℃,respectively.At 60℃,the tensile strength and elongation at break of sample are 0.70 MPa and 14.63%,respectively.The printed propellant owns comparable tensile strength and reduced elongation at break compared to conventional casting propellant.The bonding strength between temperature sensor and propellant is 0.21 MPa,showing favourable bonding effect.The resistance of temperature sensor varies linearly with temperature within testing temperature range(20-60℃),dem-onstrating good temperature monitoring capability.
作者 周明月 王立民 梁导伦 王国祺 李霁 陈頔 张焘 ZHOU Ming-yue;WANG Li-min;LIANG Dao-lun;WANG Guo-qi;LI Ji;CHEN Di;ZHANG Tao(Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,Southeast University,Nanjing 210096,China;College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;Inner Mongolia Power Machinery Research Institute,Hohhot 010010,China;Key Laboratory of MEMS of the Ministry of Education,Southeast University,Nanjing 210096,China)
出处 《含能材料》 EI CAS CSCD 北大核心 2022年第9期927-936,共10页 Chinese Journal of Energetic Materials
基金 基础加强计划技术领域基金资助(2021‐JCJQ‐JJ‐0421)。
关键词 复合固体推进剂 增材制造 力学性能 电阻式温度传感器 composite solid propellant additive manufacturing mechanical properties resistive temperature sensor
  • 相关文献

参考文献15

二级参考文献110

共引文献86

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部