期刊文献+

经皮冠状动脉介入治疗术后复发预警模型研究 被引量:1

Study on a Prediction Model of Percutaneous Coronary Intervention Postoperative Recurrence
下载PDF
导出
摘要 提出以术后随访的常规无创检验结果数据为依据,机器学习算法为基础,对患者经皮冠状动脉介入治疗(Percutaneous Coronary Intervention,PCI)术后复发情况进行预警建模,详细阐述模型构建方法、实验评估及分析方法,并对结果进行分析。 Based on conventional follow-up non-invasive test results and machine learning algorithms,an early warning modeling of Percutaneous Coronary Intervention(PCI) postoperative recurrence is proposed.The model construction method,experimental evaluation and analytical method are expounded in detail,and the results are analyzed.
作者 王颖晶 倪连超 陈珊黎 邵维君 韩刚 丁粉华 郑涛 WANG Yingjing;NI Lianchao;CHEN Shanli;SHAO Weijun;HAN Gang;DING Fenhua;ZHENG Tao(InformationCenter,Renji Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai200127,China;Wonders InformationCo.Ltd.,Shanghai201112,China)
出处 《医学信息学杂志》 CAS 2022年第6期40-43,71,共5页 Journal of Medical Informatics
基金 上海市信息化发展专项资金项目“面向仁济医院医联体的专病临床科研智能辅助决策平台建设”(项目编号:201901007)。
关键词 经皮冠状动脉介入治疗术后复发 机器学习 随访数据 Percutaneous Coronary Intervention(PCI)postoperative recurrence machine learning follow-up data
  • 相关文献

参考文献5

二级参考文献112

  • 1龙金亮,王红玉,王永学,宋新勤.冠心病患者的心理社会影响因素比较研究[J].临床心身疾病杂志,2005,11(2):140-141. 被引量:25
  • 2陈家鼎 等.生存数据分析的统计方法[M].北京:中国统计出版社,1998.255-260.
  • 3刘勤,金丕焕,何大卫.按 PV 值分组估计 Cox 模型生存率的剖析[J].中国卫生统计,1997,14(1):4-6. 被引量:12
  • 4刘海波 徐波.冠心病介入治疗-从临床试验到临床实践[M].北京:人民卫生出版社,2002.3-11.
  • 5Conuemey L,Ashapfio P,Mclanghlin JS,et al. Relation between depression after coronary artery bypass surgery and 12-month outcome: a prospective study. Lancet, 2003,362:604-609.
  • 6James A, Blumenth D, Heather S, et al. Depression as a risk fac- tor for mortality after coronary artery bypass surgery, lancet, 2003,358 : 1766-1770.
  • 7Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 8Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 9Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 10Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.

共引文献437

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部