期刊文献+

Excited electron and spin dynamics in topological insulator: A perspective from ab initio non-adiabatic molecular dynamics 被引量:1

原文传递
导出
摘要 We perform an ab initio non-adiabatic molecular dynamics simulation to investigate the non-equilibrium spin and electron dynamics in a prototypical topological insulator(TI)Bi,Ses.Different from the ground state,we reveal that backscattering can happen in an oscillating manner between time-reversal pair topological surface states(TSSs)in the non-equilibrium dynamics.Analysis shows the phonon excitation induces orbital composition change by electron-phonon interaction,which further stimulates spin canting through spin-orbit coupling.The spin canting of time-reversal pair TSSs leads to the non-zero non-adiabatic coupling between them and then issues in backscattering.Both the spin canting and backscattering result in ultrafast spin relaxation with a timescale around 10o fs.This study provides critical insights into the non-equilibrium electron and spin dynamics in TI at the ab initio level and paves a way for the design of ultrafast spintronic materials.
出处 《Fundamental Research》 CAS 2022年第4期506-510,共5页 自然科学基础研究(英文版)
基金 supported by National Key R&D Program of China(Grant No.2017YFA0204904) National Natural Science Foundation of China(Grants No.11620101003 and 11974322)Anhui Initiative in Quantum Information Technologies(Grant No.AHY090300).Calculations were performed at Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory,a user facility sponsored by the Us Department of Energy Office of Biological and Environmental Research.
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部