摘要
Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
基金
support from the National Natural Science Foundation of China(51973054)
Young Talents Program in Hunan Province(2020RC3024)
Natural Science Funds of Hunan Province for Distinguished Young Scholar(2021JJ10018)
Science Research Project of Hunan Provincial Education Department(21B0027)
High-level Innovative Talent Project in Hunan Province(2018RS3055).