期刊文献+

Plants response to light stress 被引量:3

原文传递
导出
摘要 Plants require solar energy to grow through oxygenic photosynthesis;however,when light intensity exceeds the optimal range for photosynthesis,it causes abiotic stress and physiological damage in plants.In response to high light stress,plants initiate a series of signal transduction from chloroplasts to whole cells and from locally stressed tissues to the rest of the plant body.These signals trigger a variety of physiological and biochemical reactions intended to mitigate the deleterious effects of high light intensity,such as photodamage and photoinhibition.Light stress protection mechanisms include chloroplastic Reactive oxygen species(ROS)scavenging,chloroplast and stomatal movement,and anthocyanin production.Photosynthetic apparatuses,being the direct targets of photodamage,have also developed various acclimation processes such as thermal energy dissipation through nonphotochemical quenching(NPQ),photorepair of Photosystem II(PSII),and transcriptional regulation of photosynthetic proteins.Fluctuating light is another mild but persistent type of light stress in nature,which unfortunately has been poorly investigated.Current studies,however,suggest that state transitions and cyclic electron transport are the main adaptive mechanisms for mediating fiuctuating light stress in plants.Here,we review the current breadth of knowledge regarding physiological and biochemical responses to both high light stress and fiuctuating light stress.
出处 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第8期735-747,共13页 遗传学报(英文版)
基金 supported by the National Key R&D Program of China (2021YFA0909600)
  • 相关文献

参考文献8

二级参考文献45

  • 1Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., and Murata, N. (2002). Salt stress inhibits the repair of photodamaged photosystem Ⅱ by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol. 130, 1443-1453.
  • 2Aronsson, H., Sundqvist, C., and Dahlin, C. (2003). POR-import and membrane association of a key element in chloroplast development. Physiol. Plant. 118, 1-9.
  • 3Belyaeva, O.B., and Litvin, F.F. (2007). Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves. Biochemistry (Mosc.). 72, 1485-1477.
  • 4Boudreau, E., Nickelsen, J., Lemaire, S.D., Ossenbuhl, E, and Rochaix, J.D. (2000). The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J. 19, 3366-3376.
  • 5Boudreau, E., Takahashi, Y., Lemieux, C., Turmel, M., and Rochaix, J.D. (1997). The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem Ⅰ complex. EMBO J. 16, 6095-6104.
  • 6D'Andrea, L.D., and Regan, L. (2003). TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655-662.
  • 7Dereeper, A., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic. Acids Res. 36 (Web Server Issue), W465-W469.
  • 8D(ihring, U., Irrgang, K.D., Lunser, K., Kehr, J., and Wilde, A. (2006). Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. Biochim. Biophys. Acta. 1757, 3-11.
  • 9Duhring, U., Ossenbuhl, F., and Wilde, A. (2007). Late assembly steps and dynamics of the cyanobacterial photosystem I. J. Biol. Chem. 282, 10915-10921.
  • 10Fujita, Y., Takagi, H., and Hase, T. (1998). Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of tight-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonerna boryanum. Plant Cell Physiol. 39, 177-185.

共引文献106

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部