期刊文献+

基于改进Dijkstra算法与时频域滤波的雷达目标识别 被引量:2

Radar target recognition based on improved Dijkstra algorithm with time-frequency domain filtering
下载PDF
导出
摘要 针对弹道中段雷达目标回波的微多普勒特征提取精准度不高导致目标识别率低的问题,提出一种基于改进Dijkstra算法与时频域滤波相结合的雷达目标分类识别方法。该方法首先采取改进Dijkstra算法提取多分量回波信号中最强分量的瞬时多普勒特征,然后利用时频域滤波方法滤除最强分量,依次提取多分量信号的瞬时多普勒特征,并将该特征应用于弹道中段雷达目标识别。仿真结果表明,该方法适用于多种微动形式,提取回波信号的微多普勒特征的精度更高,对于弹道中段雷达目标平均识别率较高。 An identification method of radar targets based on improved Dijkstra algorithm with time-frequency domain filtering is proposed to solve the problem that the accuracy of micro-Doppler feature extraction of radar targets in the middle of the trajectory is not high,resulting in low target recognition rates.The improved Dijkstra algorithm is used for extracting the instantaneous Doppler features of the strongest component in the multi-component echo signal.Then the strongest component is filtered through the time-frequency domain filter.So the instantaneous Doppler features of the multi-component signal can be extracted in proper sequence,and features are applied to identify radar targets in the middle of the trajectory.The simulation results demonstrate that this method is suitable for a variety of micro-motion forms,the micro-Doppler features of the echo signal have higher accuracy,and the average recognition rate of radar targets in the middle of the trajectory is increased effectively.
作者 王彩云 姚晨 吴钇达 王佳宁 李晓飞 黄盼盼 WANG Caiyun;YAO Chen;WU Yida;WANG Jianing;LI Xiaofei;HUANG Panpan(College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Beijing Institute of Electronic System Engineering,Beijing 100854,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第10期3090-3095,共6页 Systems Engineering and Electronics
基金 国家自然基金(61301211)资助课题。
关键词 雷达自动目标识别 微多普勒 DIJKSTRA算法 时频域滤波 radar automatic target recognition(RATR) micro-Doppler Dijkstra algorithm time-frequency domain filtering
  • 相关文献

参考文献8

二级参考文献86

  • 1洪灵,戴奉周,刘宏伟.基于三维重构的空间目标进动参数估计方法[J].电波科学学报,2015,30(2):237-243. 被引量:6
  • 2刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,2004,14(11):1329-1332. 被引量:27
  • 3庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525. 被引量:128
  • 4于承敏,刘永涛,金磊.基于SVM的相关反馈图像检索研究[J].微计算机信息,2007,23(02X):207-209. 被引量:6
  • 5Parker K J, Lerner R M, and Huang S R. Method and apparatus for using Doppler modulation parameters for estimation of vibration amplitude[P]. U. S. Patent 5,086,775, Feb. 11, 1992.
  • 6Lovett A, Shen C, and Otaguro W. Micro Doppler: non- cooperative target classification/identification[R]. A420040, AD, Maryland, USA, Naval Air Warfare Center Aircraft Division. 2004.
  • 7Chen V C, Li F Y, and Ho S S. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. IEEE Transactions on Aerospace and Electronic System, 2006, 42(1) 2-21.
  • 8Bell M R and Grubbs R A. JEM modeling and measurement for radar target identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 73-87.
  • 9Gao H, Xie L, Wen S, et al.. Micro-Doppler signature extraction form ballistic target with micro-motions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1969-1982.
  • 10Li Po, Wang D C, and Wang Lu. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm[J]. Signal, Image and Video Processing, 2011, DOI:10.1007/S 11760-011-0263-3.

共引文献89

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部