摘要
基于Coons曲面提出一种适用于任意拓扑四边形网格的插值细分方法,通过改变初始网格点切向达到调整极限曲面形状的效果。首先,根据每条边两端点及端矢构造三次Bézier曲线,在曲线上采样得到新边点及其切向;然后,以每个面四条边对应的Bézier曲线为边界线构造插值的Coons曲面,在曲面上采样得到新面点及其切向,形成新的细分网格。实例分析表明,针对不同的初始网格,提出方法均得到质量较好的插值曲面。
A interpolation subdivision scheme is proposed based on Coons surface,suitable for quadrilateral meshes with arbitrary topology.The scheme changes the tangent vector of nodes in the initial mesh to adjust the limit surface shape.Firstly,a cubic Bézier curve is constructed by the two ends and tangent vector of each edge.Sample on the curve to get the new edge vertice and its tangent vector.Bézier curves are taken on the four sides of each face as the boundary curves,which are interpolated by a Coons surface constructed.Sample on the surface to get the new face vertice and its tangent vector to form a new subdivision mesh.The examples show that the subdivision scheme in this paper can obtain surfaces with good quality for different initial meshes.
作者
范健
李亚娟
刘建贞
邓重阳
FAN Jian;LI Yajuan;LIU Jianzhen;DENG Chongyang(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2022年第5期70-75,共6页
Journal of Hangzhou Dianzi University:Natural Sciences