期刊文献+

基于UKF的联合信道参数估计和数据检测算法 被引量:2

UKF-based Joint Channel Estimation and Data Detection Algorithm
下载PDF
导出
摘要 目的:为提高正交频分复用(OFDM)的通信系统的性能指标,对无线信道进行精确估计,提出一种高效并且稳定的算法。方法:采用一种基于无迹卡尔曼滤波(UKF)结合少量导频的信道参数估计算法,在计算中,为进一步提高信道参数估计的收敛速度,每次迭代计算都对信道冲激响应,噪声方差的估计值进行更新,以及采取联合信道参数估计和数据检测算法的方式。结果:基于UKF的信道估计算法能够收敛到给定参数的信道,并且在保持系统的误码率性能不变的要求下可以使得迭代次数减少。结论:本算法能够很好地跟踪信号地时变特性,提高信道参数估计的收敛速度。 Objective:In order to improve the performance of the communication system using orthogonal frequency division multiplexing,an efficient and stable algorithm is needed to accurately estimate the wireless channel.Methods:A channel parameter estimation algorithm based on Unscented Kalman Filter and a small number of pilots is adopted.In order to further improve the convergence speed of channel parameter estimation,the estimated values of channel impulse response and noise variance are updated in each iteration calculation,and the joint channel parameter estimation and data detection algorithm are adopted.Results:The channel estimation algorithm based on UKF can converge to the channel with given parameters,and the number of iterations can be reduced while keeping the BER performance of the system unchanged.Conclusion:The algorithm in this paper can track the time-varying characteristics of the signal and improve the convergence speed of channel parameter estimation.
作者 潘基翔 PAN Jixiang(Anhui Post and Telecommunication College,Hefei 230031,China)
出处 《安徽科技学院学报》 2022年第4期49-54,共6页 Journal of Anhui Science and Technology University
基金 国家自然科学基金(42074183)。
关键词 正交频分复用 检测 信道估计 UKF算法 Orthogonal frequency division multiplexing Detection Channel estimation Unscented kalman filter algorithm
  • 相关文献

参考文献2

二级参考文献26

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2Crassidis J L, Markley F L. Predictive filtering for nonlinear systems [J ]. J of Guidance, Control, and Dynamics, 1997, 20(3): 566-572.
  • 3Gordon N , Salmond D. Novel approach to non-linear and non Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140(2): 107- 113.
  • 4Julier S J, Uhlmann J K. A new approach for filtering nonlinear system[C]. Proc of the 1995 American Control Conference. 1995: 1628-1632.
  • 5Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions[EB/OL], http://www. eng. ox. ac. uk/.
  • 6Qi Song, Juntong Qi, Jianda Han. An adaptive UKF algorithm and its application in mobile robot control[C]. Proc of the 2006 IEEE Int Conf on Robotics and Biomimeties. Kunming, 2006: 1117-1122.
  • 7Seong Yun Cho, Byung Doo Kim. Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system[J]. Automatica, 2008, 44 (8) : 2040- 2047.
  • 8Seong Yun Cho, Wan Sik Choi. Robust positioning technique in Low-Cost DR/GPS for land navigation[J]. IEEE Trans on Instrumentation and Measurement, 2006, 55(4): 1132-1142.
  • 9Juliet S J. The scaled unscented transformation[C]. Proc of American Control Conf. Jefferson City, 2002:4555-4559.
  • 10Sage A P, Husa G W. Adaptive filtering with unknown prior statistics[C]. Joint Automatic Control Conf. Colombia, 1969: 760-769.

共引文献38

同被引文献36

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部