摘要
Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.All alloying elements in these calculations were thermodynamically favorable,which indicated that these elements could be dissolved inα-Ti alloys.Ti_(35)Os had the highest elastic modulus as compared to those of other dilute Tibased solid solutions.Au,Co,and Pt were found to be promising candidates for improving the ductilities ofα-Ti solid solution alloys.Solid solution strengthening was analyzed using Cottrell's and Labush's models.Based on the solid solubility,Ir,Rh,Ni,and Pt were found to possess the best solid solution hardening effects in the following order:Ir>Rh>Ni>Pt.The bonding state between Ti and the impurity atom was visually characterized owing to the difference between their charge densities.By integrating the calculations of mean bond length and mean population,the results showed that Ti-Os had the largest mean population and degree of delocalization of the electron cloud around the solute atom,implying ionic characteristics of Os and Ti.Furthermore,after analyzing the alloying elements of each group,we found thatⅧ-group elements(Ru,Rh,Pd,Os,Ir,Pt)had good potentials for improving the comprehensive mechanical properties of Ti alloys.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2022年第8期2719-2731,共13页
稀有金属(英文版)
基金
financially supported by the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province (No.202002AB080001-3)
the National Natural Science Foundation of China (No.52001150)