摘要
Nd^(3+)900 nm激光可用于泵浦掺Yb^(3+)激光材料和大气探测,其倍频产生的深蓝激光在面向水下通信、原子冷却、生物医学、激光存储、激光显示及激光加工等领域具有重大意义,但实现Nd^(3+)900 nm激光必须要解决Nd^(3+)1060 nm跃迁竞争的问题。本文介绍了各类掺Nd^(3+)激光材料900 nm激光的研究发展历程,并简单总结了抑制1060 nm激光的方法。结合本课题组研究工作,指出进一步提高Nd^(3+)900 nm激光输出功率,关键是保证较低浓度猝灭几率并提高材料自身900 nm荧光分支比。通过向Nd^(3+)石英玻璃中掺入非氧阴离子基团调节Nd^(3+)微观配位环境,大大提高了Nd^(3+)900 nm荧光分支比,将该玻璃拉制成芯包比为20/125μm光纤,初步主振荡功率放大实验结果显示,该光纤对1060 nm放大的自发辐射具有很好的抑制效果,为实现Nd^(3+)900 nm高功率激光输出提供了新的技术方案。
Nd^(3+)900 nm laser can be used for pumping Yb^(3+)laser materials and atmospheric detection.The deep blue laser produced by its frequency doubling has important applications in underwater communications,atomic cooling,biomedicine,laser storage,laser display,and laser processing.However,the realization of Nd^(3+)900 nm laser must overcome the problem of Nd^(3+)1060 nm transition competition.This article introduces the development history of various Nd^(3+)-doped laser materials 900 nm laser,and briefly summarizes the methods to suppress 1060 nm laser.Combined with the research work of our research group,this article proposes that the key to further increasing the output power of the Nd^(3+)900 nm laser is to ensure a lower quenching probability and increase the 900 nm fluorescence branching ratio of the material.By incorporating non-oxygen anion groups into Nd^(3+)silica glass to adjust the Nd^(3+)micro-local environment,the Nd^(3+)900 nm fluorescence branching ratio is greatly improved.Nd^(3+)-doped fiber with a core-to-clad ratio of 20/125μm was drawn from the preform with this silica glass as the core.Preliminary master oscillation power amplification results showed that the fiber had a good inhibition effect on amplified spontaneous emission at 1060 nm.This provides a new method for realizing Nd^(3+)900 nm high-power laser.
作者
陈应刚
董贺贺
林治全
焦艳
郭梦婷
王亚飞
王孟
张磊
王世凯
于春雷
胡丽丽
Chen Yinggang;Dong Hehe;Lin Zhiquan;Jiao Yan;Guo Mengting;Wang Yafei;Wang Meng;Zhang Lei;Wang Shikai;Yu Chunlei;Hu Lili(Key Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China;Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,Zhejiang,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2022年第15期34-46,共13页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61975216)
浙江省博士后科研项目(ZJ2020070)。