期刊文献+

微型Y型撞击流混合器强化快速沉淀反应可控制备碳酸锶微球 被引量:1

Controllable Preparation of Strontium Carbonate Microspheres by Fast Precipitation Reaction in a Miniature Y-Jet Mixer
下载PDF
导出
摘要 采用微型Y型撞击流混合器提高混合效率,利用共沉淀法制备碳酸锶(SrCO_(3))微球。采用乙二胺四乙酸二钠(EDTA)作为添加剂控制颗粒形貌。考察了EDTA浓度、反应物浓度对颗粒形貌和粒径分布(PSD)的影响。实验结果表明,以EDTA为添加剂,可以得到正交晶型球形SrCO_(3)颗粒。EDTA与氯化锶(SrCl_(2))的物质的量浓度之比RE是影响颗粒形貌和粒径的关键因素。当R_(E)固定时,反应物浓度对形貌和粒径影响不大。在最佳条件下制得的微球粒径为2~3μm,PSD非常窄。未添加EDTA时,只得到杆状颗粒,颗粒倾向于聚集成束。对EDTA调控SrCO_(3)形貌的机理进行了探讨。 In this work,a miniature Y⁃jet mixer was used to enhance the mixing efficiency to prepare strontium car⁃bonate(SrCO_(3))microspheres by using the co⁃precipitation method.Ethylenediamine tetraacetic acid disodium(EDTA)was used as the additive to control particle morphology.The effects of EDTA concentration and reactant concentrations on the morphology and particle size distribution(PSD)were investigated.Experimental results dem⁃onstrate that orthorhombic⁃type spherical SrCO_(3) particles were obtained by using EDTA as an additive.The molar concentration ratio of EDTA to strontium chloride(SrCl_(2)),R_(E),is the key factor affecting the particle morphology and size.When RE was fixed,reactant concentrations had little effect on the morphology and size.The microspheres pre⁃pared under the optimum conditions were 2⁃3μm with a very narrow PSD.Without EDTA,only rod⁃shaped parti⁃cles were prepared and the particles tend to aggregate into bundles.The mechanism of how EDTA regulates the mor⁃phology is also discussed.
作者 姚瀚植 游攀 张俊杰 骆培成 YAO Han-Zhi;YOU Pan;ZHANG Jun-Jie;LUO Pei-Cheng(School of Chemistry&Chemical Engineering,Southeast University,Nanjing 211189,China)
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2022年第10期2103-2110,共8页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.22078058)资助。
关键词 碳酸锶 混合 沉淀反应 Y型撞击流混合器 形貌 strontium carbonate mixing precipitation reaction Y⁃jet mixer morphology
  • 相关文献

参考文献1

二级参考文献31

  • 1Patel, A. A.; Wu, F.; Zhang, J. Z.; Torres-Martinez, C. L.; Mehra, R. K; Yang, Y.; Risbud, S. H.J Phys. Chem. B 2000, 104, 11598-11605.
  • 2Wang, Z. L. J. Phys.: Condens. Matter. 2004, 16, 829-858.
  • 3Hagen, A.; Barkschat, A.; Dohrmann, J. K.; Tributsch, H. Solar Energy Materials and Solar Cells 2003, 77, 1-13.
  • 4Zhou, G. J.; Lv, M. K; Xiu, Z. L.; Wang, S. F.; Zhang, H. P.; Zou, W. G. Journal of Crystal Growth 2005, 276, 16-120.
  • 5Choi, C. S.; Kim, Y. W. Biomaterials 2000, 21,213-222.
  • 6Manoli, E; Kanakis, J.; Malkaj, E; Dalas, E. Journal of Crystal Growth 2002, 236, 363-370.
  • 7Manoli, F.; Dalas, E. Journal of Crystal Growth 2000, 218, 359-364.
  • 8Hao, W.; Shen, Q.; Zhao, Y.; Wang, D. J.; Xu, D. E Journal of Crystal Growth 2004, 260, 545-550.
  • 9Yu, J. G.; Lei, M.; Bei, C.; Zhao, X. J. Journal of Solid State Chemistry 2004, 177, 681-689.
  • 10Dinamani, M.; Kamath, P.; Seshadri, R. Crystal Growth & Design 2003, 3, 417-423.

共引文献2

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部