期刊文献+

Direct assembly between closed-shell coinage metal superatoms

原文传递
导出
摘要 Bottom-up constructing all-metal functional materials is challenging,because the metal clusters are prone to lose their original structures during coalensence.In this work,we report that closed-shell coinage metal superatoms can achieve direct chemical bonding without losing their electronic properties.The reason is that the supermolecule formed by two superatoms has the same number of bonding and anti-bonding supermolecular orbitals,in which the bonding orbitals contribute to bonding and the antibonding orbitals with anti-phase orbitals delocalized over each monomer to maintain the individual geometric and electronic structural properties.Further analysis indicates the interactions between two superatoms are too weak to break the structure of monomers,which is confirmed by the first-principles molecular dynamics simulations.With these superatoms as the basic units,a series of robust one-dimensional and two-dimensional nanostructures are fabricated.Our findings provide a general strategy to take advantage of superatoms in regulating bonding compared to natural atoms,which paves the way for the bottom-up design of materials with collective properties.
出处 《Nano Research》 SCIE EI CSCD 2022年第9期8665-8672,共8页 纳米研究(英文版)
基金 the National Science Foundation of China(Nos.11974136 and 11674123).
  • 相关文献

参考文献5

二级参考文献73

  • 1Pyykko, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 2008, 37, 1967-1997.
  • 2Li, X.; Kiran, B.; Li, J.; Zhai, H. J.; Wang, L. S. Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem., Int. Ed. 2002, 41, 4786-4789.
  • 3Pyykko, P.; Runeberg, N. Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction andelativity and in accord with the 18-electron rule. Angew. Chem., Int. Ed. 2002, 114, 2278-2280.
  • 4Gao, Y.; Chen, L.; Dai, X.; Song, R. X.; Wang, B.; Wang, Z. Q. A strong charge-transfer effect in surface-enhanced Raman scattering induced by valence electrons of actinide elements. RSCAdv. 2015, 5, 32198-32204.
  • 5Neukermans, S.; Janssens, E.; Tanaka, H.; Silverans, R. E.; Lievens, P. Element- and size-dependent electron delocaliza- tion in AuNX+ clusters (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Phys. Rev. Lett. 2003, 90, 033401.
  • 6Gao, Y.; Bulusu, S.; Zeng, X. C. Gold-caged metal clusters with large HOMO-LUMO gap and high electron affinity, j Am. Chem. Soc. 2005, 127, 15680-15681.
  • 7Zhai, H. J.; Li, J.; Wang, L. S. Icosahedral gold cage clusters: M@Au12 (M = V, Nb, and Ta). J. Chem. Phys. 2004, 121, 8369-8374.
  • 8Teo, B. K.; Zhang, H. Polyicosahedricity: Icosahedron to icosahedron of icosahedra growth pathway for bimetallic (Au-Ag) and trimetallic (Au-Ag-M; M - Pt, Pd, Ni) supraclusters; synthetic strategies, site preference, and stereochemical principles. Coord. Chem. Rev. 1995, 143, 611-636.
  • 9Zhao, L. L.; Jensen, L.; Schalz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced raman scattering. J. Am. Chem. Soc. 2006, 128, 2911-2919.
  • 10Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1992, 69, 1664-1667.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部