摘要
The purpose of the present study is to investigate the extreme values of the ice drift speed,which are also considered in the light of the magnitude of the simultaneous wind speed.The relationship between wind speed and ice drift speed is studied.The long-term ice drift data is collected by using local subsurface measurements based on acoustic Doppler current profilers(ADCP)in the Beaufort Sea during the period of 2006-2017.Upward-looking sonars(ULS)are deployed in order to observe the ice thickness as well as to identify events that correspond to open water conditions.The relationship between the ice drift speed and the wind speed is also investigated.It is found that the magnitude of the average ice drift speed is approximately 2.5%of the wind speed during the winter season.Estimation of the extreme values of the ice drift speed is studied by application of the average conditional exceedance rate(ACER)method.It is found that the extreme ice drift speed during the ice melt season(i.e.the summer season)is approximately20%-30%higher than that during the ice growth season(i.e.the winter season).The extreme ice drift speed can be effectively estimated based on the 2.5%wind speed.Moreover,the extreme ice drift speed can be obtained based on the extreme values of 2.5%of the wind speed based on multiplying with an amplification factor which varies in the range from 1.7 to 2.0 during the growth season,corresponding to increasing return periods of 10,25,50 and 100years.
基金
Open Access funding provided by NTNU Norwegian University of Science and Technology(incl St.Olavs Hospital-Trondheim University Hospital)。