期刊文献+

基于聚类的社交网络安全机制研究

Research on the Security Mechanism of Social Network Based on Clustering
下载PDF
导出
摘要 为了有效地防范社交网络环境中用户数据隐私泄露的风险,提出一种基于聚类的社交网络保护机制。首先将全同态加密技术引入社交共享数据中,保护社交过程中数据的隐私安全;其次,在保证用户信息和数据安全的前提下构建社交网络结构图,将经过同态加密处理的用户信息和数据按照节点相似度进行聚类,并对聚类后的社交网络结构进行分类和区分;最后对聚类后的超节点进行匿名化处理和分析,结果表明该社交网络模型可以降低信息损失度,同时保证了用户数据的隐私安全,验证了数据可用性。 In order to effectively prevent the risk of user data privacy leakage in social network environment,a social network protection mechanism based on clustering is proposed.First,we introduce fully homomorphic encryption technology into social shared data to protect the privacy security of data in the social process;secondly,construct a social network structure diagram under the premise of ensuring the security of user information and data,cluster the user information and data processed by homomorphic encryption according to the node similarity,and classify and distinguish the clustered social network structure;finally,the clustered supernodes are anonymized and analyzed.The results show that the social network model can reduce the degree of information loss,ensure the privacy security of user data,and verify the availability of data.
作者 李秋贤 周全兴 LI Qiuxian;ZHOU Quanxing(Kaili University,Kaili 556011,China)
机构地区 凯里学院
出处 《现代信息科技》 2022年第16期168-170,共3页 Modern Information Technology
基金 黔东南州科技计划项目(黔东南科合J字[2021]39号) 扶持市(州)高校质量提升工程项目(院办发[2022]10号-32) 贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2020]179,黔教合KY字[2020]180) 凯里学院专项课题(XTYB1602)。
关键词 社交网络 聚类 全同态加密 匿名化 信息损失度 social network clustering fully homomorphic encryption anonymization degree of information loss
  • 相关文献

参考文献9

二级参考文献177

  • 1姜传贤,孙星明,易叶青,杨恒伏.基于JADE算法的数据库公开水印算法的研究[J].系统仿真学报,2006,18(7):1781-1784. 被引量:9
  • 2刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 3Hay M, Miklau G, Jensen D, et al. Anonymizing social networks [R]. 07-19. University of Massachusetts Amherst, 2007.
  • 4Liu K, Terzi E. Towards identity anonymization on graphs [C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD' 08). New York, NY, USA, ACM Press, 2008 : 93.
  • 5Liu Kun, Das K, Grandison T, et al. Privacy preserving data analysis on graphs and social networks[C]//Kargupta H, Han J, Yu P, et al. , eds. Nexteneration Data Mining. CRC Press, 2008.
  • 6Zheleva E,Getoor L. Preserving the privacy of sensitive relationships in graph data[C]//Proeeedings of the 1st ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD(PinKDD' 07). 20071153-171.
  • 7Han Jia-wei, Kamber M, Data Ming. Concepts and Techniques(第二版)[M].范明,阵小峰,译.北京:机械:工业出版社,2007:255-259.
  • 8Zhou Bin, Pei J ian, Luk W-S. A Brief Survey on Anonymization Techniques for Privacy Preserving Publishing of Social Network Data[J]. ACM SIGKDD Explorations, ACM Press, 2008, 10 (2) : 12-22.
  • 9Zhou B, Pei J. Preserving Privacy in Social Networks against Neighborhood Attacks[C]//IEEE International Conference on Data Engineering(ICDE). 2008 : 506-515.
  • 10Byun J W, Kamra A, Bertino E, et al. Efficient k-Anonymization using Clustering Techniques [C] // International Conference on Database Systems for Advanced Applications(DASFAA). 2007:188-200.

共引文献999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部