期刊文献+

基于分组差分粒子群算法的含分布式电源配电网故障定位 被引量:10

Fault location in distribution network based on packet difference particle swarm optimization
下载PDF
导出
摘要 针对粒子群算法在对含分布式电源的配电网故障定位时,易陷入局部最优的问题,文章提出了一种分组差分粒子群算法。该算法对粒子群进行了分组操作,每组粒子群均可代表原种群的特性,并对每组全局最优值进行了变异、选择操作。文章构造了配电网故障定位的目标函数,以含分布式电源的IEEE33节点配电网系统为例进行仿真测试,对该算法与其他启发式优化算法进行了对比分析,结果验证了该算法在故障定位时不易陷入局部收敛,且准确性和快速性得到提高。最后通过配网自动化平台对所提算法进行了验证,进一步证明了该算法应用于实际工程的可行性。 Aiming at the problem that the particle swarm algorithm is easy to fall into the local optimum when locating faults in the distribution network with distributed power sources,this paper proposes a packet difference particle swarm optimization.The algorithm performs grouping operations on particle swarms,and each group of which can represent the characteristics of the original population,and the global optimal value of each group is mutated and selected.This paper constructs the objective function for the fault location of the distribution network,and takes the IEEE33-node distribution network system with distributed power sources as an example to conduct a simulation test.The algorithm is compared and analyzed with other heuristic optimization algorithms.The results verify that the algorithm is effective it is not easy to fall into local convergence during fault location,and the accuracy and speed are improved.Finally,the proposed algorithm is verified by the distribution network automation platform,which further proves the feasibility of the algorithm in practical engineering.
作者 赵冰杰 贾宏杰 李沐阳 侯恺 高晗 李亮 Zhao Bingjie;Jia Hongjie;Li Muyang;Hou Kai;Gao Han;Li Liang(Key Laboratory of Smart Grid Ministry of Education,Tianjin University,Tianjin 300072,China;International College,Xiamen University of Technology,Xiamen 361000,China;Jinzhong Power Supply Company,State Grid Shanxi Electric Power Company,Jinzhong 030600,China)
出处 《可再生能源》 CAS CSCD 北大核心 2022年第10期1380-1386,共7页 Renewable Energy Resources
基金 国家自然科学基金(52061635103)。
关键词 配电网 故障定位 分布式电源 分组 粒子群算法 差分算法 distribution network fault location distributed power packet particle swarm optimization difference algorithm
  • 相关文献

参考文献16

二级参考文献225

共引文献420

同被引文献143

引证文献10

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部