期刊文献+

基于特征工程和机器学习的铝基高熵合金稳定性预测 被引量:3

Phase stability prediction of hign entropy alloys in aluminum matrix composites based on feature engneering and machine learning
下载PDF
导出
摘要 铝基复合材料具有众多优异的性能,应用前景较好.以简单稳定相的高熵合金可以作为增强颗粒来制备铝基复合材料,其各方面力学性能都显著提升.提出了一种基于结合了特征工程和机器学习的新方法来研究高熵合金相稳定性.该方法利用特征工程筛选出影响目标属性的重要因素,然后选择相应的回归方法预测相稳定性.使用50%的数据集进行训练,并在其余数据集上进行测试验证.研究结果表明,该方法在预测高熵合金的相稳定性方面具有较高的准确性(R^(2)=0.994),且能辅助找到影响相稳定性的关键因素. Aluminum matrix composites offer many excellent properties and wide application prospects.High entropy alloys with a simple and stable phase can be used as reinforcement to prepare aluminum matrix composites with significantly improved performance in all aspects.Herein,a new method based on feature engineering and machine learning is proposed to investigate the phase stability of high entropy alloys.This method uses feature engineering to determine the important factors affecting the target attributes,and then selects the corresponding regression method to predict the phase stability.A model on 50%of the datasets is trained and then the model is verified on other datasets.The results show that this method is highly accurate in predicting the phase stability of high entropy alloys(R^(2)=0.994).In addition,this method can be used to identify key factors affecting phase stability.
作者 胡瑞 刘庆 张光捷 李俊杰 陈晓玉 魏晓 戴东波 HU Rui;LIU Qing;ZHANG Guangjie;LI Junjie;CHEN Xiaoyu;WEI Xiao;DAI Dongbo(School Computer Engineering and Science,Shanghai University,Shanghai 200444,China;Centerof Materials Informatics and Data Science,Materials Genome Institute,Shanghai University,Shanghai 200444,China;Zhejiang Laboratory,Hangzhou 311100,Zhejiang,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第3期476-484,共9页 Journal of Shanghai University:Natural Science Edition
基金 国家重点研发计划资助项目(2018YFB0704400) 云南省重大科技专项资助项目(202002AB080001-2) 之江实验室科研攻关资助项目(2021PEOAC02)。
关键词 铝基复合材料 高熵合金 特征工程 机器学习 相稳定性预测 aluminum matrix composite high entropy alloy feature engineering machine learning phase stability prediction
  • 相关文献

参考文献6

二级参考文献39

  • 1Lei Jiang,Changsheng Wang,Huadong Fu,Jie Shen,Zhihao Zhang,Jianxin Xie.Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy[J].Journal of Materials Science & Technology,2022(3):33-43. 被引量:12
  • 2王仲谋,数据仓库—客户/服务器计算指南,1997年
  • 3Davies S, Russl S. NP completeness of searches for smallest possible feature sets[C]//Proceedings of the AAAI Fall Symposiums on Relevance, Menlo Park, 1994:37-39.
  • 4Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • 5Strobl Carolin, Boulesteix Anne-Laure, Kneib Thomas, et al. Conditional variable importance for random forests[J]. BMC Bioinformatics, 2008, 9 (1) : 1-11.
  • 6Reif David M, Motsinger Alison A, McKinney Brett A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]//IEEE Symposium on Computational In- telligence and Bioinformatics and Computational Bi- ology, 2006: 171-178.
  • 7Mohammed Khalilia, Sounak Chakraborty, Mihail Popescu. Predicting disease risks from highly im- balanced data using random forese[J]. BMC Medi- cal Informaties and Decision Making, 2011, 11(7): 51-58.
  • 8Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests[J]. Pattern Recognition, 2011, 44 (2): 330-349.
  • 9Inza I, Larranaga P, Blanco R. Filter versus wrap- per gene selection approaches in DNA microarray domains [J]. Artificial Intelligence in Medicine, 2004, 31(2): 91-103.
  • 10蒋盛益,郑琪,张倩生.基于聚类的特征选择方法[J].电子学报,2008,36(B12):157-160. 被引量:18

共引文献505

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部