期刊文献+

交通场景中多目标车辆快速检测与分割算法 被引量:1

Multi-objective vehicle fast detection and segmentation algorithm in traffic scenes
下载PDF
导出
摘要 车辆目标的粘连检测和分割是实现交通场景中目标跟踪和路面车流量统计等功能必须解决的关键问题.首先,采用高斯降采样滤波处理剔除车体细节噪声干扰,利用镜像对称LBP编码的相似性对车体对称结构进行分析,提取对称轴;然后,利用对称轴分布的数量和位置信息进行车辆目标粘连检测;最后,结合车体对称结构信息和目标轮廓凹性分析给出车辆轮廓最优分割方案.实验结果表明,在满足实时处理速度要求的前提下,相比传统的基于轮廓形状的分析算法,本算法在复杂的环境噪声干扰下具有更好的噪声适应性,并且在车辆粘连检测准确率和粘连分割能力方面均有更好的表现. Adhesion detection and segmentation of vehicle targets is a key problem that must be solved to realize the function of target tracking and traffic flow statistics in traffic scenes. In this paper, Gaussian decampling filter was used to eliminate vehicle detail noise, the symmetry axis of the vehicle body was extracted by analyzing the similarity of the mirror symmetry LBP coding. And then, the number and position information of symmetry axis distribution were used to detect the adhesion of vehicle targets. Finally, the optimal segmentation scheme of vehicle contour was given based on the symmetric structure information of vehicle body and the concavity analysis of target contour. The experimental results show that, on the premise of meeting the real-time processing speed requirements, the proposed algorithm has better noise adaptability under the interference of complex environmental noises compared with the traditional analysis algorithm based on contour shape, and has better performance in terms of vehicle adhesion detection accuracy and adhesion segmentation ability.
作者 马秀博 孙熊伟 MA Xiubo;SUN Xiongwei(Department of Computer Engineering,Anhui Sanlian University,Hefei 230601,China;Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230088,China)
出处 《湖北大学学报(自然科学版)》 CAS 2022年第6期742-749,共8页 Journal of Hubei University:Natural Science
基金 安徽省教育厅自然科学重点项目(KJ2017A524) 校级自然科学基金重点项目(KJZD2020008)资助。
关键词 对称检测 LBP编码 遮挡检测 粘连分割 symmetry detection LBP occluded vehicles detection adhesion segmentation
  • 相关文献

参考文献2

二级参考文献27

  • 1王臣豪,刘富强,田敏,黄宇晖,马彪.基于Blob的车辆识别及其跟踪算法研究[J].信号处理,2005,21(z1):370-374. 被引量:7
  • 2Koller D, Daniilidis K, Nagel H H. Model-based object tracking in monocular image sequences of road traffic scenes [ J ]. International Journal of Computer Vision, 1993, 10(3) : 257-281.
  • 3Kilger M. A shadow handler in a video-based real-time traffic monitoring system [ C ]// Proceedings of the IEEE Workshop on Applications of Computer Vision. CA: Palm Springs, 1992: 11-18.
  • 4Roya R, Mansour J. Real-time classification and tracking of multiple vehicles in highways [ J ]. Pattern Recognition Letters, 2005, 26 (10) : 1597-1607.
  • 5Beymer D, McLauchlan P, Coifman B, et al. A real-time computer vision system for measuring traffic parameters [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, Calif: IEEE Computer Society Press, 1997: 495-501.
  • 6Iannizzotto G, Vita L. Real-time object tracking with models and affine transformations [ C ]// Proceedings of International Conference on Image Processing. Vancouver, BC, Canada: IEEE Computer Society, 2000: 316-318.
  • 7Baumberg A M, Hogg D C. An efficient method for contour tracking using active shape models [ C ]// Proceedings of the Second IEEE Workshop on Applications of Computer Vision. Sarasota, Florida: IEEE, 1994:194-199.
  • 8Blake A, Isard M. Active Contours [ M ]. Berlin: Springer, 1998.
  • 9Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J].International Journal of Computer Vision, 1988, 1(3) : 163-169.
  • 10Terzopoulos D, Szeliski R. Tracking with Kalman snakes [ M ]. Cambridge, MA: MIT Press, 1992: 3-20.

共引文献27

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部