期刊文献+

网络系统的容错控制、优化与博弈研究综述 被引量:1

Review on Fault-Tolerant Control,Optimization,and Game for Network Systems
下载PDF
导出
摘要 网络系统是一类由多个子系统通过机械或通信相互耦合所构成的系统。该系统由于其结构复杂、耦合机制多变,具有较高发生故障的概率。随着近几年人工智能的快速发展,网络系统除了可能发生物理故障,还可能存在恶意决策,为系统的安全性带来了新的威胁。本文首先针对网络系统的物理故障,从容错控制和容错优化两个角度总结和梳理当前国内外相关的研究成果。接着,沿着容错博弈控制技术发展的脉络,从博弈控制到分别面向物理故障和恶意决策的容错博弈控制,总结了相关的研究成果。进一步,梳理了当前博弈论在集群飞行器中的应用现状,并以此抛砖引玉,希望推动容错博弈成果在航空航天领域中的应用。最后给出了几个未来值得探索的研究方向。 A network system is composed of a couple of subsystems connected with mechanisms or communication.Such a system has a high probability of faults because of its complex structure and changeable coupling mechanisms.With the rapid development of artificial intelligence technology in recent years,network systems are threatened by physical faults and malicious decisions.This paper summarizes current research results on fault-tolerant control and fault-tolerant optimization.Then,following the development of the fault-tolerant game,the relevant research results are summarized from the game control to the faulttolerant game for physical faults and malicious agents.Further,the applications of the game theory on unmanned aerial vehicle(UAV)swarms are summarized.Finally,several research directions that are worth investigating in the future are presented.This review could promote the development of fault-tolerant game in the field of aerospace.
作者 姜斌 许宇航 杨浩 JIANG Bin;XU Yuhang;YANG Hao(College of Automation Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 211106,China)
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2022年第5期789-800,共12页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(62073165,62020106003,62233009) 111引智计划(B20007)。
关键词 容错控制 博弈控制 互联系统 多智能体系统 fault-tolerant control game control interconnected systems multi-agent systems
  • 相关文献

参考文献10

二级参考文献127

  • 1石桂芬,方华京.基于相邻矩阵的多机器人编队容错控制[J].华中科技大学学报(自然科学版),2005,33(3):39-42. 被引量:5
  • 2郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91. 被引量:93
  • 3张颖伟,刘建昌,张嗣瀛.一类复杂系统的容错控制[J].控制与决策,2005,20(8):901-904. 被引量:5
  • 4Isaacs R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. New York: Dover Publications, 1999.
  • 5Issacs R. Differential Games: SIAM Series in Applied Mathematics. New York: John Wiley and Sons, 1965.
  • 6Friedman A. Differential Games: Pure and Applied Mathematics Series. New York: Wiley Interscience, 1971.
  • 7Friedman A. Differential Games. Rhode Island: American Mathematical Society, 1974.
  • 8Nash J. Non-cooperative games. Annals of Mathematics, 1951, 54(3): 286-295.
  • 9Basar T, Olsder G J. Dynamic Noncooperative Game Theory (2nd Edition). New York: SIAM, Society for Industrial and Applied Mathematics, 1999.
  • 10Basar T, Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach (2nd Edition). Boston: Birkh?user Boston Inc., 2008.

共引文献114

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部