期刊文献+

基于磁流体发电机的波浪能最大功率追踪策略研究 被引量:4

RESEARCH ON MAXIMUM POWER TRACKING STRATEGY OF WAVE ENERGY BASED ON MHD GENERATOR
原文传递
导出
摘要 为了提高某给定海试样机的波能转换效率,提出一种组合控制策略:采用爬山法确定最优参考电流,模型预测控制算法决定MOSFET开关管的关断跟随最优参考电流。当波高降低时,如果直接采用爬山法确定最优参考电流,扰动方向会判断错误,因此加入平均功率减小阈值的判断。仿真结果表明,改进后的爬山法无论波高上升还是下降都能正确判定扰动方向,能够随波高的任意变化自适应调整Boost电路的等效负载,使磁流体波浪发电机得以输出最大功率。最后,搭建硬件电路,利用直流电压源模拟磁流体波浪发电机,通过实验验证控制策略的有效性。 In order to improve the wave energy conversion efficiency of a given sea sample machine,a combined control strategy is proposed,in which the mountain climbing method is used to determine the optimal reference current,and the model predictive control algorithm is used to determine the switch off of MOSFET The switch follows the optimal reference current. When the wave height decreases,the direction of disturbance will be judged wrong when the hill-climbing method is used to determine the optimal reference current,so the judgment of average power reduction threshold is added. The simulation results show that the improved hill-climbing method can correctly determine the disturbance direction whether the wave height rises or falls,and can adaptively adjust the equivalent load of the boost circuit with any change of the wave height to achieve the maximum power output of the MHD wave generator. Finally,the hardware circuit is built to simulate the MHD wave generator with DC voltage source,and the effectiveness of the control strategy is verified by experiments.
作者 刘华兵 张庆贺 刘艳娇 彭爱武 Liu Huabing;Zhang Qinghe;Liu Yanjiao;Peng Aiwu(Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第9期402-409,共8页 Acta Energiae Solaris Sinica
基金 国家海洋可再生能源资金项目(GHME2018SF02)。
关键词 磁流体发电机 波浪能 最大功率追踪 爬山法 模型预测控制 magnetohydrodynamic generator wave energy maximum power point trackers hill climbing model predictive control
  • 相关文献

参考文献7

二级参考文献49

  • 1可再生能源中长期发展规划[J].可再生能源,2007,25(5):1-5. 被引量:36
  • 2MCARTHUR S, BREKKEN T K A. Ocean wave power data generation for grid integration studies[C]// IEEE Power and Energy Society General Meeting, July 25-29, 2010, Minneapolis, USA: 6p.
  • 3FAI.CAO A F O, JUSTINO P A P. OWE wave energy devices with air flow control[J]. Ocean Engineering, 1999, 26 (12) : 1275-1295.
  • 4HENDERSON R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31(2): 271-283.
  • 5IAHNKES L P, GOMES M N, ISOLDI L A, et al. Energy from the sea: computational modeling of an overtopping device [C]// Third Southern Conference on Computational Modeling (MESUL), NovemBer 23-25, 2009, Rio Grande; 94-99.
  • 6POLINDER H, DAMEN M E C, GARDNER F. Linear PM generator system for wave energy conversion in the AWS[J]. IEEE Trans on Energy Conversion, 2004, 19(3): 583-589.
  • 7AMON E A, BREKKEN T K A, SCHACHER A A. Maximum power point tracking for ocean wave energyconversion[J]. IEEE Trans on Industry Applications, 2012, 48(3): 1079-1086.
  • 8WU F, ZHANG X P, JU P, et al. Optimal control for AWS based wave energy conversion system [J]. IEEE Trans on Power Systems, 2009, 24(4): 1747-1755.
  • 9NIE Z, XIAO X, KANG Q, et al. SMES battery energy storage system for conditioning outputs from direct drive linear wave energy converters [ J ]. IEEE Trans on Applied Superconductivity, 2013, 23(3): 5p.
  • 10FALNES J. Ocean waves and oscillating systems[M]. UK: Cambridge University Press, 2002.

共引文献58

同被引文献53

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部