期刊文献+

双策略耦合优化的含瓦斯煤破裂过程信号辨识

Signal identification of fracture in gas bearing coal based on dual strategy coupling optimization
原文传递
导出
摘要 为解决含瓦斯煤破裂过程信号特征的辨识问题,以双向长短时记忆网络(BiLSTM)为基分类器,提出一种基于AdaBoost算法与哈里斯鹰优化(HHO)算法双策略耦合优化的辨识模型。首先针对AdaBoost算法中错误样本占比随迭代不断增加影响最终强分类器辨识效果的问题,引入权重参数,以改变弱分类器权重,提高辨识精度;然后为确定最优的模型参数,结合HHO,优化辨识参数与权重参数,优化过程中HHO与改进的AdaBoost算法产生耦合作用,使得辨识模型的准确性和稳定性达到最优,平均准确率为91.36%,标准差缩小至0.0174。研究结果表明:双策略耦合优化HHO-AdaBoost-BiLSTM含瓦斯煤体破裂过程信号特征辨识模型准确性更高,稳定性更强。 In order to address identification problems of signal characteristics of fracture in gas bearing coal during fracture process,with Bi-directional Long Short-Term Memory network(BiLSTM)as base classifier,a dual strategy coupling optimization identification model for such signal characteristics was proposed based on AdaBoost algorithm and HHO algorithm.Firstly,in view of the problem that proportion of error samples in AdaBoost algorithm increased with iteration,which had an impact on results of final strong classifiers,weight parameters were introduced and weights of weak classifiers were changed so as to improve identification.Then,to determine optimal model parameters,identification parameters and weight parameters were optimized based on HHO,and during optimization process,HHO and improved AdaBoost algorithm produced a coupling effect,which made the identification model's accuracy and stability reach optimal level,resulting in an average accuracy of 91.36%and standard deviation being reduced to 0.0174.The results show that the dual strategy coupling optimization model of HHO-AdaBoost-BiLSTM identification of signal characteristics of fracture in gas bearing coal has higher accuracy and stability.
作者 付华 赵俊程 刘昊 刘雨竹 卢万杰 FU Hua;ZHAO Juncheng;LIU Hao;LIU Yuzhu;LU Wanjie(Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao Liaoning 125105,China;College of Mining and Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China;College of Mechanical Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2022年第10期40-47,共8页 China Safety Science Journal
基金 国家自然科学基金资助(51974151,71771111) 辽宁省创新团队项目(LT2019007) 辽宁省教育厅科技项目(LJ2019QL015)。
关键词 含瓦斯煤破裂 信号特征辨识 双策略 耦合优化 ADABOOST算法 哈里斯鹰优化(HHO)算法 fracture in gas bearing coal identification of signal characteristics dual strategy coupling optimization AdaBoost algorithm Harris hawk optimization(HHO)algorithm
  • 相关文献

参考文献18

二级参考文献192

共引文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部