期刊文献+

面向工程电磁学的动生麦克斯韦方程组及其求解方法 被引量:11

Maxwell’s equations for a mechano-driven varying-speed-motion media system for engineering electrodynamics and their solutions
原文传递
导出
摘要 从物理学四大定律的积分表达式出发,本文系统介绍了适用于低速、非匀速运动介质电磁场演化规律的动生麦克斯韦方程组,以及方程组的建立背景和物理图像;为研究实际工程应用中运动系统的电磁场提供新方法和新思路.我们认为处理地球上宏观运动物体的电磁现象时,一般可以忽略相对论效应.与一般经典教程中默认介质做匀速直线运动(即惯性系)不同,我们拟解决非惯性系中有加速度运动介质以及介质形状和边界随时间变化的系统中的电磁场动力学问题,重点描述动生麦克斯韦方程组求解的数学方法、(机械)力-电-磁的多场耦合效应与相互作用等.最后,讨论了麦克斯韦方程在微观尺度下边界条件的扩展和在集总电路应用中的处理方法. Beginning from the integral forms of the four physics laws,we derive Maxwell’s equations for a mechano-driven,slow,nonuniform moving speed media system based on Galilean space and time,thus presenting a new approach for solving the electromagnetic field problems in a moving system with acceleration.For the electromagnetism of macro-objects on Earth,we believe that the relativistic effect can be generally ignored.Different from the classical texts on electrodynamics,which assumes motion is a constant speed along a straight line in the inertial frame,our theory describes the electromagnetism of the media systems in the noninertial frame with acceleration and time-dependent volume,shape,and boundary.Most importantly,the expanded Maxwell’s equations are solved through mathematical means.Our objective is to study the dynamics of coupling among the mechano-electric-magnetic multifields.Lastly,the expansion of the boundary conditions at the nanoscale boundaries and the application of the Maxwell’s equations in a lumped circuit system are discussed.
作者 王中林 邵佳佳 WANG ZhongLin;SHAO JiaJia(Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,China;School of Nanoscience and Technology,University of Chinese Academy of Sciences,Beijing 100049,China;School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta 30332-0245,USA)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2022年第9期1416-1433,共18页 Scientia Sinica(Technologica)
关键词 动生麦克斯韦方程组 非惯性介质运动 动生极化 工程电磁学 伽利略变换 洛伦兹变换 狭义相对论 Maxwell’s equations for a mechano-driven system non-inertia medium movement mechano-driven polarization engineering electrodynamics Galilean transformation Lorentz transformation special relativity
  • 相关文献

二级参考文献9

共引文献27

同被引文献91

引证文献11

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部