摘要
为了研究钨在瞬态热流下达到熔融状态后,不同脉冲参数对其熔融重凝行为的影响,实验观察了钨在脉宽5 ms与0.1 ms的脉冲辐照下熔融重凝行为的特征,并考虑熔融层流动驱动力、冷却速率、温度梯度等多项因素,分析了分层结构与柱状晶对热源参数的依赖性。通过计算两种热源参数下的热作用特性分析了钨在脉宽0.1 ms的脉冲辐照下出现柱状晶而在脉宽5 ms的脉冲辐照下未出现的原因。研究发现,高流强和短脉宽的脉冲束流易于促进形成分层结构,其原因是较高流强能引起材料表层熔化层流动,同时较短脉宽能使熔化层流痕来不及恢复平整,而被快速冷却固化;当样品在瞬态热流下发生熔化时,较短的脉宽有利于形成柱状晶,较长的脉宽有利于形成等轴晶粒和出现晶粒长大。
To study the influence of different pulse parameters on the melting and resolidification behavior of tungsten after its temperature reaches the melting point under transient heat flow,the differences in morphology and structure of tungsten after melting and resolidification under IPEB(5 ms)and CPF(0.1 ms)were experimentally observed.The dependence of hierarchical structure and columnar crystal grain on pulse parameters was analyzed considering the driving force of molten layer motion,cooling rate,temperature gradient and other factors.The reason why the columnar crystal grains appear on tungsten at pulse width of 0.1 ms but not at pulse width of 5 ms was analyzed by calculating the thermal action characteristics for two heat sources.It is found that the beam with high current intensity and short pulse width is easy to promote the formation of hierarchical structure.The reason is that the high current intensity of the pulse beam can cause the molten layer motion on the surface of the material,while the short pulse width of the pulse beam can make the molten traces too late to recover and be quickly cooled and solidified.When the sample melts under transient heat flow,short pulse width is beneficial to the formation of columnar crystal grains and long pulse width is beneficial to the formation of equiaxed grains and grain growth.
作者
屈苗
颜莎
Qu Miao;Yan Sha(China Nuclear Strategic Planning Research Institute Co.,Ltd.,Beijing 100048,China;Institute of Heavy Ion Physics,Peking University,Beijing 100871,China)
出处
《强激光与粒子束》
CAS
CSCD
北大核心
2022年第12期149-156,共8页
High Power Laser and Particle Beams
基金
国家磁约束核聚变研究计划专项项目(2013GB109004)。
关键词
钨
瞬态热流
熔融重凝
脉冲参数
热作用特性
tungsten
transient heat flow
melting and resolidification
pulse parameters
thermal action characteristics