期刊文献+

面向小样本数据的机器学习方法研究综述 被引量:22

Survey on Machine Learning Methods for Small Sample Data
下载PDF
导出
摘要 小样本学习是面向小样本数据的机器学习,旨在利用较少的有监督样本数据去构建能够解决实际问题的机器学习模型。小样本学习能够解决传统机器学习方法在样本数据不充分时性能严重下降的问题,可以为新型小样本任务实现低成本和快速的模型部署,缩小人类智能与人工智能之间的距离,对推动发展通用型人工智能具有重要意义。从小样本学习的概念、基础模型和实际应用入手,系统梳理当前小样本学习的相关工作,将小样本学习方法分类为基于模型微调、基于数据增强、基于度量学习和基于元学习,并具体阐述这4大类方法的核心思想、基本模型、细分领域和最新研究进展,以及每一类方法在科学研究或实际应用中存在的问题,总结目前小样本学习研究的常用数据集和评价指标,整理基于部分典型小样本学习方法在Omniglot和Mini-ImageNet数据集上的实验结果。最后对各种小样本学习方法及其优缺点进行总结,分别从数据层面、理论研究和应用研究3个方面对小样本学习的未来研究方向进行展望。 Few-shot learning is a type of machine learning method for small sample data that operates by using less supervised sample data to build machine learning models that can solve practical problems.Therefore,few-shot learning can be used to solve the serious performance degradation problem in traditional machine learning methods when a small sample data is used,and can achieve low-cost and rapid model deployment for new few-sample tasks,which has the potential of narrowing the distance between human intelligence and artificial intelligence and promote the general importance of artificial intelligence development.This paper systematically sorts out the existing related studies on fewshot learning and classifies the methods on few-shot learning into model-based fine-tuning,data augmentation,metricbased learning,and meta-learning based on the concept,basic model,and practical application of few-shot learning.Moreover,the core ideas,basic models,subdivision fields,and latest research progress in these four method categories are specifically expounded,and the problems existing in the scientific research and practical application of each method category are outlined. Data sets and evaluation indicators are also obtained,and the experimental results are organized based on typical few-shot learning methods with Omniglot and Mini-ImageNet datasets.Additionally,the advantages and disadvantages of various few-shot learning methods are summarized.Finally,data-level theoretical and applied research approaches,and potential future research directions of few-shot learning,are determined.
作者 陈良臣 傅德印 CHEN Liangchen;FU Deyin(Department of Computer,China University of Labor Relations,Beijing 100048,China;Department of Applied Statistics,China University of Labor Relations,Beijing 100048,China;Key Laboratory of Network Assessment Technology,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;College of Computer Science&Technology,Wuhan University of Technology,Wuhan 430063,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第11期1-13,共13页 Computer Engineering
基金 国家统计局全国统计科学研究项目(2022LY005) 中国劳动关系学院科研项目(22XYJS021) 中国劳动关系学院教改项目(JG22080) 中国科学院网络测评技术重点实验室课题(KFKT2022-003)。
关键词 小样本学习 小样本数据 机器学习 深度学习 数据增强 few-shot learning small sample data machine learning deep learning data augmentation
  • 相关文献

参考文献14

二级参考文献97

  • 1张庆林,王永明.元学习能力及其培养[J].中国教育学刊,1996(3):34-37. 被引量:47
  • 2ZHU X J.Semi--supervised Learning Literature Survey[R].Madison:University of Wisconsin,2008.
  • 3Joaehims T.Transductive Inference for Text Classification using Support vector Machines [C].Proeeedings of the Sixteenth International Conference on Maehine l_eaminh.Morgan Kaufmann Publisherslne,1999.
  • 4Zhu X J,Ghahramani Z,Lafferty J.Semi,supervised learning using Gaussian fields and harmonic functions [C]//Proceedings of Twentieth International Conference on Machine Learning.Washington DC:AAAI,2003:912-919.
  • 5Zhou D Y,Bousquet O,Lal T,et al.Learning with local and global consistency [C].Advances in Neural Information Processing ',System 16. USA:MIT Press,2004:321-328.
  • 6Du W,Urahama K.Semi "superviSed Classification with spectral projection of muhiplicative!y.modulated similarity data [J].IEICE Transaetionson Information and Systems,2007,E90D(9):1456-1459.
  • 7Gui J,Huang D S,You Z H.An Improvement on Learning with Local and Global Consistency [C].Thel9tb International Conference on Pattern Reeognition(iCPR 2008),Tampa,FL,2008.
  • 8Gong Y C,Chen C L.Semi-supervised Method for Gene Expression Data Classification with Gaussian Fields and Harmonic Functions [C].Thel9th International Conference on Pattern Recognition(ICPR 2008),Tampa,FL,2008.
  • 9Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[C].Proeeedings of the 1 lth Annual Conference on Computational Learning Theory(COLT98)Wisconsin,M1,1998.
  • 10Camps-vails G,Marsheva T V B, Zhou D Y.Semi'supervised graph - based Hyperspectral image classifieation [C].Internaiional Geoseience and Remote Sensing SymPosium,Denver, CO,2006.

共引文献372

同被引文献293

引证文献22

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部