摘要
利用“荷载-结构”模型,采用ABAQUS分析软件建立了隧道马蹄形断面装配式仰拱衬砌结构三维模型,分析了在Ⅲ、Ⅳ、Ⅴ、Ⅵ级围岩荷载下,仰拱块与边墙连接处V型接头凸起长度分别为3、5、8、10 cm时仰拱块及二次衬砌拱墙的受力特征和安全系数。研究发现,当V型接头凸起长度为5~8 cm时,仰拱块接头处受到的压力、摩擦力最小;二次衬砌与仰拱块接头处的接触程度随V型接头凸起长度的增加而减小,随围岩等级的降低而增加;仰拱块顶板的最大水平拉应力会随接头凸起长度的增加而增大,当围岩等级为Ⅴ、Ⅵ级时,仰拱块腹板上方的顶板处可能会出现受拉破坏;装配式仰拱衬砌结构的安全系数会随接头凸起长度的增加而先增大后减小,并且Ⅴ、Ⅵ级围岩中不宜采用装配式仰拱衬砌。
The three-dimensional model for the fabricated inverted arch lining structure of the tunnel horse shoe shaped section is established by using the"load-structure"model with ABAQUS analysis software.The stress characteristics and safety factors of the inverted arch block and the secondary lining arch wall are analyzed when the V-joint bulge length at the connection between the inverted arch block and the side wall is 3,5,8 and 10 cm,respectively,under the load of surrounding rock grade III,IV,V and VI.It is found that when the convex length of V-joint is 5~8 cm,the pressure and friction at the inverted arch block joint are the smallest.The contact degree of the joint between the secondary lining and the inverted arch block decreases with the increase of the convex length of the V-joint,and increases with the decrease of the grade of surrounding rock.The maximum horizontal tensile stress of the inverted arch block roof will increase with the increase of the joint bulge length.When the surrounding rock grade is grade V and VI,tensile failure may occur at the roof above the inverted arch block web.The average safety factor of fabricated inverted arch lining structure will first increase and then decrease with the increase of joint bulge length,and fabricated inverted arch lining should not be used when the surrounding rock sare grade V and VI.
作者
赵晓勇
秦哲麟
高新强
王飞
齐凯
樊浩博
朱正国
ZHAO Xiaoyong;QIN Zhelin;GAO Xinqiang;WANG Fei;QI Kai;FAN Haobo;ZHU Zhengguo(China Railway First Survey and Design Institute Group Co.,Ltd.,Xi'an 710043,China;State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Hebei Key laboratory of Mechanics Behavior Evolution and Control of Transport Engineering Structures,Shijiazhuang 050043,China;Hebei Technology and Innovation Center on Safe and Efficient Mining of Metal Mine,Shijiazhuang 050043,China)
出处
《国防交通工程与技术》
2022年第6期11-16,60,共7页
Traffic Engineering and Technology for National Defence
基金
中国铁建股份有限公司科技重大专项(2019-A04,2019-A05)
陕西省重点研发项目(2022SF-198)
中铁第一勘察设计院集团有限公司科研项目(院科19-15-01,19-18-01)。