期刊文献+

一种基于CAEs-LSTM融合模型的窃电检测方法 被引量:11

Electricity theft detection method based on a CAEs-LSTM fusion model
下载PDF
导出
摘要 为解决现有的智能电网电力盗窃行为检测方法中准确性不足、检测效率低下等问题,提出了一种由卷积自编码器网络(convolutional auto-encoders,CAEs)和长短期记忆网络(long short term memory,LSTM)相结合的CAEs-LSTM检测模型。该模型通过分析数据集的特点对电力数据进行二维转换,设计卷积自编码器结构,采用池化、下采样和上采样重构电力数据的二维空间特征,加入高斯噪声提高模型鲁棒性,并构建长短期记忆网络以学习全局时序特征。最后,对提取的时空特征进行融合从而检测能源窃贼,并进行了参数调优。在由国家电网公布的真实数据集上,通过将CAEs-LSTM模型与支持向量机、LSTM以及宽深度卷积神经网络进行对比,CAEs-LSTM模型的平均精度均值和曲线下面积值均最优。仿真实验表明,基于CAEs-LSTM模型的窃电检测方法具有更高的窃电检测效率和精度。 To solve the problems of insufficient accuracy and low detection efficiency in existing detection methods of electricity theft in smart grids,a CAEs-LSTM detection model combining convolutional auto-encoders(CAEs)with long short-term memory networks(LSTM)is proposed.The model conducts two-dimensional conversion to power data,designs the encoder structure by analyzing the characteristics of data set,and reconstructs the two-dimensional space characteristics of the electricity data using pooling layers,down and up sampling layers.It adds Gaussian noise to improve its robustness,and builds long short-term memory networks to learn the global characteristics.Finally,spatial-temporal characteristics are fused to detect energy thieves,and parameter tuning is performed.Based on the public available real data set of the State Grid,the CAEs-LSTM model is optimal in the value of mean average prediction and area under curve,by comparing the CAEs-LSTM model with support vector machines,the LSTM model,and wide and deep convolutional neural networks.Simulation experiments show that the theft detection method based on the CAEs-LSTM model has higher detection efficiency and accuracy.
作者 董立红 肖纯朗 叶鸥 于振华 DONG Lihong;XIAO Chunlang;YE Ou;YU Zhenhua(School of Computer Science and Technology,Xi’an University of Science and Technology,Xi’an 710000,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2022年第21期118-127,共10页 Power System Protection and Control
基金 国家自然科学基金项目资助(61873277) 中国博士后科学基金项目资助(2020M673446)。
关键词 窃电检测 长短期记忆网络 卷积自编码器 深度学习 缺失值填补 electricity theft detection long short-term memory network convolutional auto-encoders deep learning missing value imputation
  • 相关文献

参考文献6

二级参考文献104

  • 1马一杰,陈君,刘松.基于长短时记忆网络的电力负荷异常检测[J].云南大学学报(自然科学版),2020,42(S02):55-59. 被引量:18
  • 2R. Jiang, R. Lu, C. Lai, J. Luo, and X. Shen, Robust group key management with revocation and collusion resistance for scada in smart grid, in Proc. IEEE Globe Communication Conference (Globecom), 2013, pp. 824- 829.
  • 32012 India blackouts, http://en.wikipedia.org/wiki/Indiabla- ckout, 2013.
  • 4R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid communications, IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621- 1631, 2012.
  • 5M. Wen, R. Lu, J. Lei, H. Li, X. Liang, and X. Shen, SESA: An efficient searchable encryption scheme for auction in emerging smart grid marketing, Security and Communication Networks, vol. 7, no. 1, pp. 234-244, 2014.
  • 6H. Li, X. Liang, R. Lu, X. Lin, H. Yang, and X. Shen, EPPDR: An efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid, IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1-10, 2013.
  • 7X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, UDP: Usage- based dynamic pricing with privacy preservation for smart grid, IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 141-150, 2013.
  • 8Independent Electricity System Operator (IESO) Office of the Information and Privacy Commissioner Ontario, Canada, Building privacy into ontario's smart meter data management system: A control framework, Tech. Rep., http://www.ipc.on.ca/english/Resources/Discussion-Papers/ Discussion-Papers-Summary/?id= 1183, May 07, 2012.
  • 9IEE Report, Utility-scale smart meter deployments, plans, & proposals, http://www.edisonfoundation.net/iee/Docu- ments/IEE_SmartMeterRollouts_0512.pdf, 2012.
  • 10Z. M. Fadlullah, N. Kato, R. Lu, X. Shen, and Y. Nozaki, Toward secure targeted broadcast in smart grid, IEEE Communications Magazine, vol. 50, no. 5, pp. 150-156, 2012.

共引文献196

同被引文献137

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部