期刊文献+

基于异质图表达学习的跨境电商推荐模型 被引量:4

The Recommender System of Cross-border E-commerce Based on Heterogeneous Graph Neural Network
下载PDF
导出
摘要 跨境电商产品推荐已经成为电子商务领域新兴的研究议题之一。由于电商产品信息复杂多样、“用户-产品”关联矩阵极为稀疏并且冷启动问题突出,因此传统的协同过滤推荐模型很难奏效。而改进的深度协同过滤模型,只考虑了用户对产品的“显式”和“隐式”的反馈信息,忽视了由用户与项目组成的图结构信息,推荐性能很难满足平台和用户的要求。为了解决这些难题,该文提出基于异质图表达学习的图神经网络模型(HGNR)用于个性化的跨境电商产品推荐,该模型具有2个显著的优势:(1)构造“用户-产品-主题”3部图作为模型的输入,通过图卷积神经网络(GCN)在异质图上进行高质量信息传播和聚合;(2)能够获取高质量的用户和产品表征向量,实现了用户和产品复杂交互关系的建模。在真实的跨境电商订单数据集上的实验结果表明,HGNR模型不仅在推荐性能上表现出色,还能有效提升冷启动用户的推荐准确率,与9种推荐基准算法相比,HGNR在评价指标HitRate@10,Item-coverage@10,MRR@10上至少提升了3.33%,0.91%,0.54%。 Cross-border e-commerce products recommendation has become one of the emerging researching topics in the field of e-commerce.Due to the diversity and complexity of e-commerce product information,the“user-item”correlation matrix is extremely sparse and the cold start problem is prominent.As a result,the traditional collaborative filtering model seems to be malfunctional.Meanwhile,the improved recommendation model based on collaborative filtering or matrix factorization only considers the explicit and implicit feedback information of the users to the products,while ignoring the graph structure information composed of users and items,so that the recommendation performance is difficult to meet the requirements of the platform and users.To tackle these issues,a recommender system of cross-border e-commerce based on heterogeneous graph neural network,named Heterogeneous Graph Neural network Recommender system(HGNR),is proposed in this paper.The model has two significant advantages:(1)the three-part graph is used as input,and high-quality information dissemination and aggregation are carried out on heterogeneous graphs through Graph Convolutional neural Network(GCN);(2)high-quality user and product representation vectors can be obtained,and realize the modeling of the complex interaction between users and products.Experimental results on real cross-border e-commerce order data sets show that HGNR not only owns the superior performance,but also can effectively improve the recommendation accuracy of cold-start users.Compared with nine baseline methods for recommendation,HGNR achieves improvements of at least 3.33%,0.91%,and 0.54%on evaluation metrics of HitRate@10,Item-coverage@10 and MRR@10.
作者 张瑾 朱桂祥 王宇琛 郑烁佳 陈镜潞 ZHANG Jin;ZHU Guixiang;WANG Yuchen;ZHENG Shuojia;CHEN Jinglu(School of Design,Jiangsu Open University,Nanjing 210036,China;Jiangsu Provincial Key Laboratory of E-Business,Nanjing University of Finance and Economics,Nanjing 210003,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第11期4008-4017,共10页 Journal of Electronics & Information Technology
基金 国家自然科学基金(91646204,71372188) 江苏省国际创新合作项目(BZ2020008)。
关键词 推荐系统 图神经网络 异质图神经网络 冷启动推荐 跨境电商 Recommendation system Graph Neural Network(GNN) Heterogeneous Graph Neural Network(HGNN) Cold start recommendation Cross-border e-commerce
  • 相关文献

参考文献5

二级参考文献38

  • 1Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 2Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 3Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 4Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 5Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 6Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 7Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
  • 8Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858. [doi: 10.1145/ 2396761.2398531].
  • 9Liu Q, Chen EH, Xiong H, Ding CHQ, Chen J. Enhancing collaborative filtering by user interests expansion via personalized ranking. IEEE Trans, on Systems, Man and Cybernetics—B, 2012,42(1):218-233. [doi: 10.1109/TSMCB.2011.2163711].
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans, on Knowledge and Data Engineering, 2005,17(16):734-749. [doi: 10.1109/TKDE.2005.99].

共引文献192

同被引文献35

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部