期刊文献+

Hybrid multibody system method for the dynamic analysis of an ultra‐precision fly‐cutting machine tool 被引量:4

原文传递
导出
摘要 The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.
出处 《International Journal of Mechanical System Dynamics》 2022年第3期290-307,共18页 国际机械系统动力学学报(英文)
基金 National Natural Science Foundation of China,Grant/Award Number:52105129 Science Challenge Project,Grant/Award Number:JZDD2016006–0102 Boya Postdoctoral Fellowship of Peking University。
  • 相关文献

参考文献4

二级参考文献49

共引文献42

同被引文献20

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部