摘要
以石墨相氮化碳(g-C_(3)N_(4))为研究对象,针对其作为光催化剂时存在比表面积小和可见光利用率低等问题进行研究。采用超声辅助合成法,将氧化石墨烯(GO)、还原氧化石墨烯(rGO)分别与g-C_(3)N_(4)按一定比例进行复合,通过XRD、SEM、FT-IR、XPS、UV-Vis等表征方法对复合材料进行表征和分析,研究了其在模拟太阳光下对罗丹明B(RhB)的光催化降解性能和降解动力学。实验结果表明,所得GO/CN、rGO/CN复合光催化剂均具有与g-C_(3)N_(4)具有相同的相结构和更加疏松多孔的形貌,且石墨烯材料的复合可以提高g-C_(3)N_(4)的可见光吸收能力,并使其禁带宽度减小。由可见光光催化性能分析得出,rGO/CN2具有更强的吸附能力,30min时对RhB的吸附率高达64.79%,为同等条件下g-C_(3)N_(4)的5.2倍,GO/CN1.5表现出优异的光催化活性,其催化反应速率常数为9.108×10^(-2) min^(-1),降解RhB 10 min时其降解率达到86.34%,为同等条件下g-C_(3)N_(4)的1.5倍。
In this experiment,graphite phase carbon nitride(g-C_(3)N_(4)) has been use as a photocatalyst to study the problems of small specific surface area and low visible light efficiency.Firstly,the graphene oxide(GO)and reduced graphene oxide(rGO)were respectively synthesized with g-C_(3)N_(4) in a certain proportion by ultrasonic assisted synthesis method.And the composites were characterized and analyzed by XRD,SEM,FT-IR,XPS,UV-Vis and other characterization methods.Secondly,the photocatalytic degradation and kinetics of rhodamine B(RhB)under simulated sunlight were studied.Finally,the experimental results show that the GO/CN and rGO/CN composite photocatalysts have the same phase structure and more porous morphology as g-C_(3)N_(4),and the graphene composite material can improve the visible light absorption capacity of g-C_(3)N_(4),and reduce its band gap width.Also,according to the analysis of visible light photocatalytic performance,rGO/CN2 has stronger adsorption capacity,and the adsorption rate f RhB at 30 min is up to 64.79%,5.2 times that of g-C_(3)N_(4) under the same conditions.GO/CN1.5 shows excellent photocatalytic activity,and its catalytic reaction rate constant is 9.108×10^(-2)/min.When RhB is degraded for 10 min,the degradation rate reaches 86.34%,which is 1.5 times that of g-C_(3)N_(4) under the same conditions.
作者
郭雄
王瑞芬
安胜利
朱杰
马润东
郭瑞华
GUO Xiong;WANG Ruifen;AN Shengli;ZHU Jie;MA Rundong;GUO Ruihua(School of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Baotou 014010,China;Inner Mongolia Key Laboratory of Advanced Ceramics and Devices,Baotou 014010,China)
出处
《功能材料》
CAS
CSCD
北大核心
2022年第11期11198-11205,共8页
Journal of Functional Materials
基金
内蒙古自然科学基金(2020MS02025)。
关键词
超声
复合光催化剂
模拟太阳光
降解性能
动力学
ultrasound
composite photocatalyst
simulated sunlight
degradation performance
dynamics