期刊文献+

基于响应值判断的目标跟踪ECO方法

Target Tracking ECO Method Based on Response Value Judgment
下载PDF
导出
摘要 目标跟踪(efficient convolution operator,ECO)方法因其优越的跟踪效果在各种跟踪场景中得到越来越广泛的应用,但该方法在面对遮挡、运动模糊、目标形变和背景杂乱等复杂工程实际情况时跟踪精度下降.针对这一问题,本研究对ECO方法进行改进,加入一种相关滤波响应值判断机制,根据前几帧图像的最大响应均值和当前帧的响应峰值标准差来决定样本模型更新时机.将改进后的ECO方法和改进前的ECO方法在相同的实验视频序列上进行对比测试,比较两种方法的跟踪效果.在OTB2015数据集上,改进后的ECO方法的精确度达到88.0%、成功率达到79.9%,分别比改进前的ECO方法提高1.5%和1.2%,特别是面对遮挡、运动模糊和背景杂乱干扰等工程实际常见情况时跟踪效果更好,显示出改进后的ECO方法拥有更灵活的模型更新策略和更强大的适应复杂工程实际情况的能力. Target tracking ECO(Efficient Convolution Operator)method is more and more widely used in various tracking scenes because of its superior tracking performance,but it shows poor tracking effect in the face of complex engineering practical situations such as occlusion,motion blur,target deformation and background clutters.To solve this problem,the ECO method was improved,and a correlation filter response value judgment mechanism was added to determine the update time of the sample model according to the maximum response mean of the previous frames and the standard deviation of the response peak of the current frame.Comparing with the original ECO method based on the same experimental video sequence,the tracking effect of the improved ECO method was showed.On OTB2015 data set,the accuracy and success rate of the improved ECO method can reach up to 88.0%and 79.9%,1.5%and 1.2%higher than the original ECO method respectively,especially in common engineering situations such as occlusion,motion blur and background clutters.It shows that this method can provide more flexible model updating strategy and stronger ability to adapt to the actual situation of complex engineering.
作者 陈信霖 王建中 孙庸 CHEN Xinlin;WANG Jianzhong;SUN Yong(School of Mechatronic Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第1期81-86,共6页 Transactions of Beijing Institute of Technology
基金 国防基础科研计划资助项目(JCKY2021602B029)。
关键词 相关滤波 高效卷积 响应值判断 correlation filtering efficient convolution operator response value judgment
  • 相关文献

参考文献7

二级参考文献35

  • 1曹健,陈红倩,毛典辉,李海生,蔡强.基于局部特征的图像目标识别问题综述[J].中南大学学报(自然科学版),2013,44(S2):258-262. 被引量:14
  • 2朱贵明,郭志芬.智能图象目标识别与跟踪[J].北京理工大学学报,1995,15(2):218-222. 被引量:2
  • 3Avidan S. Ensemble tracking[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(2) :261 - 271.
  • 4Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S. 1.].. IEEE, 2009 : 983 - 990.
  • 5Zhang K, Zhang L, Yang M H. Real-time compressive tracking[M]. Berlin, Heidelberg: Springer, 2012.Vision, 1998,26(1):63 -84.
  • 6Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003,25(5) :564 - 577.
  • 7Ross D A, Lira J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008,77(1 - 3) :125 - 141.
  • 8Ross D A, Lira J, IAn R S, et al. Incremental learning for robust visual tracking[J].International Journal of Computer Vision, 2008,77(1 - 3) :125 - 141.
  • 9Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on lie algebra[C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE, 2006: 728- 735.
  • 10Li H, Shen compressive Conference Recognition. C, Shi Q. Real-time visual tracking using sensing [ C ] // Proceedings of IEEE on Computer Vision and Pattern [S. 1. ]: IEEE,2011..1305 - 1312.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部