期刊文献+

不确定重尾量测噪声干扰下的鲁棒目标跟踪算法 被引量:1

A Robust Target Tracking Algorithm under Condition of Uncertain Heavy-Tailed Measurement Noise
下载PDF
导出
摘要 在大多数目标跟踪方法中,通常假设量测噪声服从参数已知的高斯分布或对称重尾分布,但其非常受限并且在实际过程中常常无法得到满足。因此,针对存在不确定重尾量测噪声干扰下的目标跟踪问题,提出基于变分推理的鲁棒容积卡尔曼滤波算法。该算法利用Skew-T分布对不确定重尾量测噪声进行建模,在基于容积规则的数值积分过程中,结合变分推理将Skew-T分布量测噪声参数与系统状态变量进行联合递归计算,通过对近似后验概率密度函数进行变分迭代,获得系统模型和不对称重尾量测噪声参数。仿真结果表明,该算法相比变分贝叶斯扩展卡尔曼滤波算法具有较高的滤波精度。 In majority target tracking methods,the measurement noise is generally assumed to be known Gaussian distributed or asymmetric Heavy-tail distributed.However,this assumption is very limited and often does not satisfy the needs of the work in practical application.A variable inference robust cubature Kalman filter is proposed for the nonlinear target tracking with unknown time-varying asymmetric Heavy-tailed noise.The asymmetric Heavy-tailed noise is modeled by Skew-T distribution.In the process of the numerical calculation of cubature Kalman filter,the system state and measurement noise parameter are jointly estimated recursively by the variable inference.The system model and unknown asymmetric heavy tailed measurement noise parameters are obtained by variable iteration of an approximate posterior probability density function.The simulation results show that the proposed algorithm is higher than the variable Bayesian extended Kalman filter algorithm in filtering accuracy.
作者 马天力 张扬 刘盼 高嵩 MA Tianli;ZHANG Yang;LIU Pan;GAO Song(College of Electronic Information Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《空军工程大学学报》 CSCD 北大核心 2022年第6期64-70,共7页 Journal of Air Force Engineering University
基金 陕西省重点研发计划(2022GY-242) 陕西省技术创新引导专项项目(2022GFY01-16)。
关键词 目标跟踪 重尾噪声 变分贝叶斯 容积卡尔曼滤波 KL散度 target tracking heavy-tailed noise variational bayesian cubature Kalman filter Kullback-Liebler divergence
  • 相关文献

参考文献8

二级参考文献70

  • 1薛锋,刘忠,曲毅.基于Unscented粒子滤波的无序观测下水下无线传感器网络目标被动跟踪[J].传感技术学报,2007,20(12):2653-2658. 被引量:5
  • 2黄斌科,王刚,汪文秉.雷达目标远区角闪烁线偏差与观察距离无关的一般性证明[J].系统工程与电子技术,2007,29(4):505-508. 被引量:2
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491.

共引文献174

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部