期刊文献+

基于背景值优化改进的灰色沉降预测模型研究 被引量:1

Research on Grey Subsidence Prediction Model Based on Optimization and Improvement of Background Value
下载PDF
导出
摘要 地下车站施工过程存在严重的安全隐患,为确保施工安全,需要对周围沉降数据进行长期预测,确保未来不会出现较大沉降导致区域塌方。将灰色模型用于沉降预测,使用积分变换替代累加序列进行背景值优化改进,提高背景值的平滑程度,达到提高预测精度的目的。实例验证表明,背景值优化可以在一定程度上提高沉降预测精度,预测残差明显降低。 There are serious potential safety hazards during the construction of the underground station.In order to ensure construction safety,long-term prediction of surrounding subsidence data is required to ensure that there will be no regional collapse caused by large subsidence in the future.The grey model is used for subsidence prediction,and the integral transformation is used to replace the accumulation sequence to optimize and improve the background value,so as to improve the smoothness of the background value and the prediction accuracy.The example shows that the background value optimization can improve the precision of subsidence prediction to a certain extent,and the prediction residual is significantly reduced.
作者 黎湛明 LI Zhanming(Foshan Benchmarking Surveying and Mapping Co.,Ltd.,Foshan 528200,China)
出处 《测绘与空间地理信息》 2022年第12期243-244,249,共3页 Geomatics & Spatial Information Technology
关键词 灰色模型 沉降预测 背景值优化 柯特斯公式 grey model subsidence prediction background value optimization Cotes formula
  • 相关文献

参考文献10

二级参考文献110

共引文献98

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部