摘要
With the utilization of underground space,backward erosion piping(BEP)has been observed in many underground structures(e.g.,shield tunnels)founded on sandy aquifers.However,due to invisibility,the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear.In this study,we developed a Hele-Shaw cell to visualize the dynamic progression of BEP.With imaging process technology,we obtained a typical process of BEP(the erosion process can be divided into a piping progression phase and a piping stabilization phase),quantitatively characterized the formation of erosion pipes,and compared the patterns of erosion(e.g.,the erosion area A and the maximum erosion radius R)that spontaneously develop under different fluxes of water.The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge,which is possibly due to the granular system in a thicker model having more degrees of freedom,reducing the stability of the sand grains.
基金
the National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit(No.2021GY01)
the National Natural Science Foundation of China(No.41630641)。