期刊文献+

融合Autogram的共振解调和1.5维谱的滚动轴承复合故障诊断方法 被引量:5

Compound fault diagnosis method of rolling bearings by Autogram resonance demodulation and 1.5-dimensional spectrum
下载PDF
导出
摘要 对滚动轴承复合故障进行诊断时,通常采用先分离后诊断的信号处理方法,由于故障特征信号相互耦合或干扰,容易出现误诊或漏诊的现象,针对该问题,提出了基于Autogram的共振解调和1.5维谱的复合故障诊断方法,能够在不分离复合故障信号的前提下识别故障类型。采用变分模态分解(VMD)对原始振动信号降噪,提出了一种综合指标Z选取VMD的有效分量进行信号重构,提高信号的信噪比;使用Autogram算法确定共振频带中心频率和带宽,对共振信号进行包络解调,得到包络信号的1.5维谱,根据1.5维谱中的故障特征来识别滚动轴承复合故障的类型。采用滚动轴承3种不同类型复合故障的实测信号验证了所提方法的可行性,试验结果表明,所提出的方法可以提高复合故障识别的准确性和直观性。 When diagnosing compound faults of rolling bearings,the signal processing method of separation is usually used before diagnosis.Because of mutual coupling or interference of fault characteristic signals,it is easy to misdiagnose or miss diagnosis.Aiming at this problem,a compound fault diagnosis method based on Autogram resonance demodulation and 1.5-dimensional spectrum is proposed,which can identify fault types without separating compound fault signals.The original vibration signal is denoised by using variational mode decomposition(VMD),and a comprehensive index Z is proposed to select the effective components of VMD for signal reconstruction to improve the signal to noise ratio.The Autogram algorithm is used to determine the center frequency and bandwidth of the resonance frequency band,and the envelope demodulation of the resonance signal is carried out to obtain the 1.5-dimensional spectrum of the envelope signal.The types of rolling bearing composite faults are identified according to the fault features in the 1.5-dimensional spectrum.The feasibility of the proposed method is verified by the measured signals of rolling bearings with three different types of compound faults.The experimental results show that the proposed method can improve the accuracy and intuition of composite fault identification,and has certain application value in engineering practice.
作者 王慧滨 剡昌锋 孟佳东 陈光亿 吴黎晓 WANG Hui-bin;YAN Chang-feng;MENG Jia-dong;CHEN Guang-yi;WU Li-xiao(School of Mechanical and Electrical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Department of Medical Technology,Zhangzhou Health Vocational College,Zhangzhou 363000,China;Institute of Railway Technology,Lanzhou Jiaotong University,Lanzhou 730030,China)
出处 《振动工程学报》 EI CSCD 北大核心 2022年第6期1541-1551,共11页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51765034)。
关键词 复合故障诊断 滚动轴承 VMD Autogram 1.5维谱 compound fault diagnosis rolling bearing VMD Autogram 1.5-dimensional spectrum
  • 相关文献

参考文献10

二级参考文献72

  • 1高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlin- ear and non-stationary time series analysis[J]. Pro- ceeding of the Royal Society of London A, 1998,454: 9O3--995.
  • 3ZHU Keheng, SONG Xigeng, XUE Dongxin. Incipi- ent fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient [J]. Journal of Vibroengineering, 2013,15(2) : 597--603.
  • 4SMITH J S. The local mean decomposition and its ap- plication to EEG perception data[J]. Journal of the Roval Society Interface, 2005,2(5) :443--454.
  • 5许平,訾艳阳,何正嘉.强噪声背景下机床主轴轴承故障微弱特征提取[J].振动与冲击,2010,29(s):121-123.
  • 6DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Pro- cessing, 2014,62(3) :531 544.
  • 7FLANDRIN P, RILLING G, GONCALVES P. Em pirical mode decomposition as a filter band [J]. IEEE Signal Processing Letters, 2004,11(2).112 114.
  • 8SANG Yanxue, HE Zhengjia, ZI Yanyang. A com- parative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis[J]. Journal of Vi- bration and Acoustics, 2010,132 (2).
  • 9FLANDRIN P, GONCALVES P. Empirical mode de- compositions as data-driven wavelet-like expansions [J]. International Journal of Wavelet, Multiresolution and Information Processing, 2004,2 (4) : 477--496.
  • 10MCFADDEN P D, SMITH J D. Model for the vibra- tion produced by a single point defect in a rolling ele- ment bearing[J]. Journal of Sound and Vibration, 1984, 96(1) .69--82.

共引文献247

同被引文献51

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部