期刊文献+

基于多维度特征融合的云工作流任务执行时间预测方法 被引量:3

Multi-dimensional Feature Fusion-based Runtime Prediction Approach for Cloud Workflow Tasks
下载PDF
导出
摘要 任务执行时间估计是云数据中心环境下工作流调度的前提.针对现有工作流任务执行时间预测方法缺乏类别型和数值型数据特征的有效提取问题,提出了基于多维度特征融合的预测方法.首先,通过构建具有注意力机制的堆叠残差循环网络,将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间,以增强类别型数据的解析能力,有效提取类别型特征;其次,采用极限梯度提升算法对数值型数据进行离散化编码,通过对稠密空间的输入向量进行稀疏化处理,提高了数值型特征的非线性表达能力;在此基础上,设计多维异质特征融合策略,将所提取的类别型、数值型特征与样本的原始输入特征进行融合,建立基于多维融合特征的预测模型,实现了云工作流任务执行时间的精准预测;最后,在真实云数据中心集群数据集上进行了仿真实验.实验结果表明,相对于已有的基准算法,该方法具有较高的预测精度,可用于大数据驱动的云工作流任务执行时间预测. Task runtime estimation is a prerequisite for workflow scheduling in cloud data centers.However,the existing runtime prediction methods for workflow activities fail to effectively extract categorical and numerical features.In this paper,we propose a multi-dimensional feature fusion-based runtime prediction approach for workflow tasks.Firstly,we construct a stacked residual recurrent neural network with an attention mechanism for mapping categorical data from high-dimensional sparse space to low-dimensional dense space so as to enlarge its capability of parsing categorical data for categorical feature extraction.Secondly,extreme gradient boosting is introduced to discretize the numerical data and enhance the nonlinear representation capability for numerical features through sparsely processing the input vectors within dense space.Thirdly,we design a heterogeneous multi-dimensional feature fusion strategy,and then blend the extracted features with original inputs to mine comprehensive knowledge for runtime prediction.Finally,based on the resulting multi-dimensional fused features,a prediction model is developed to fully utilize these features as well as its corresponding hidden knowledge and then to forecast the runtimes accurately for cloud workflow tasks.To verify the effectiveness and superiority of the proposed method,we conduct extensive experiments on a cluster dataset from a real cloud data center.The experimental results show that,our approach outperforms the existing algorithms and can be applied in big data-driven runtime prediction for workflow activities in the cloud.
作者 李慧芳 黄姜杭 徐光浩 夏元清 LI Hui-Fang;HUANG Jiang-Hang;XU Guang-Hao;XIA Yuan-Qing(Key Laboratory of Intelligent Control and Decision of Complex Systems,Beijing Institute of Technology,Beijing 100081)
出处 《自动化学报》 EI CAS CSCD 北大核心 2023年第1期67-78,共12页 Acta Automatica Sinica
基金 国家重点研发计划(2018YFB1003700) 国家自然科学基金(61836001)资助。
关键词 云数据中心 工作流 集成学习 特征融合 执行时间预测 Cloud data centers workflows ensemble learning feature fusion execution time prediction
  • 相关文献

参考文献8

二级参考文献56

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2刘涵,刘丁,李琦.基于支持向量机的混沌时间序列非线性预测[J].系统工程理论与实践,2005,25(9):94-99. 被引量:46
  • 3胡明华,汤铭端.基于分布函数的程序执行时间的静态预估[J].计算机工程与设计,2006,27(16):3045-3047. 被引量:3
  • 4蒋凡,张辉,谈刚.TTCN-3编译器符号表的设计和实现[J].计算机工程与科学,2007,29(10):124-127. 被引量:2
  • 5NADEEM F,FAHRINGER T.Predicting the execution time of grid workflow applications through local learning[C]//Proceedings of the Conference on High Performance Computing Networking,Storage and Analysis.New York,N.Y.,USA:ACM,2009:1-12.
  • 6SMITH W,FOSTER I,TAYLOR V.Predicting application run times with historical information[J].Journal of Parallel and Distributed Computing,2004,64(9):1007-1016.
  • 7JIANG B,WENG C L,DU J,et al.A QoS-aware and faulttolerant workflow composition for grid[C]// Proceedings of the 7th International Conference on Grid and Cooperative Computing.Washington,D.C.,USA:IEEE Computer Society,2008:510-516.
  • 8MARTINEZ A,ALFARO F J,SANCHEZ J L,et al.A new cost-effective technique for QoS support in clusters[J].IEEE Transactions on Parallel and Distributed Systems,2007,18(12):1714-1726.
  • 9LIU X,CHEN J J,LIU K,et al.Forecasting duration intervals of scientific workflow activities based on time-series patterns[C]//Proceedings of the 4th International Conference on Science.Washington,D.C.,USA:IEEE Computer Society,2008:23-30.
  • 10PRODAN R,FAHRINGER T.Overhead analysis of scientific workflows in grid environments[J].IEEE Transactions on Parallel and Distributed Systems,2008,19(3):378-393.

共引文献98

同被引文献33

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部