摘要
传统三相并网逆变器模型系统的分析,通常采用基于虚拟电网磁链的定向控制策略,在有效减少系统额外成本的同时,还能提高系统运行可靠性。但在分析传统不加补偿的磁链观测时,存在因相角偏移易引起系统误差的问题。为此,提出加LPF补偿的磁链观测器模型方案,研究电容、电网电压观测器新设计方法,并与无差拍预测电流控制算法相结合,对传统无差拍控制进行深入研究,研究发现存在一定程度的控制延时问题。因此,进一步提出一种改进型的无差拍电流预测控制,增加预测k+2时刻采样电流,提高抗扰动性能。最后,对三相无交流电压传感器电压估计策略与改进型无差拍预测电流控制算法相结合进行实验验证,实验结果可验证所提控制策略的有效性与可行性。
When analyzing the traditional three-phase grid-connected inverter model system,it is found that the use of a control strategy based on the orientation of the flux linkage of the virtual grid can effectively reduce the additional cost of the system and greatly improve the operation reliability of the system.However,when analyzing the traditional flux linkage observation without compensation,the phase angle offset problem is likely to cause system errors.In order to solve the problem,the flux linkage observer model scheme with LPF compensation is proposed in this paper,and the new design of capacitor voltage observer and grid voltage observer is studied.Combined with the deadbeat predictive current control algorithm,the traditional deadbeat control has been deeply studied,and it is found that there is a certain degree of control delay.An improved deadbeat current predictive control is proposed for improvement,and increase the sampling current at the time of prediction k+2 to make the anti-disturbance performance better.Finially,the experiments of the three-phase without AC voltage sensor estimation strategy combined with the improved deadbeat predictive current control algorithm is carried out,and the experimental results verify the effectiveness of the proposed strategy.
作者
荆江平
余小婵
刘元
JING Jiangping;YU Xiaochan;LIU Yuan(Power Dispatching Control Center,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210024,China;College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200120,China;Clean Energy and Smart Grid Hunan Collaborative Innovation Center,Changsha University of Science&Technology,Changsha 410114,China)
出处
《电力科学与技术学报》
CAS
北大核心
2022年第6期157-164,共8页
Journal of Electric Power Science And Technology
基金
上海市科技创新行动计划(19DZ1205402)。