期刊文献+

一种在线高精度车用锂电池SOC估计的方案研究 被引量:2

Research on an Online High-precision Vehicle Lithium Battery SOC Estimation Scheme
下载PDF
导出
摘要 本文针对车用锂电池的高精度SOC估计方法进行研究,首先选取二阶Thevenin等效电路作为本文锂电池的等效电路模型,针对车用锂电池复杂工况难以在线辨识的等效模型参数的问题,提出使用移动指数窗的LS算法在线辨识锂电池的等效电路模型参数,最后通过粒子滤波算法估计SOC。仿真和实验验证了在车用锂电池中使用移动指数窗的LS算法辨识等效电路模型参数具有较高的精度,且SOC估计精度得到提高。 This paper studies the high-precision SOC estimation method of lithium battery for vehicles.First, the second-order Thevenin equivalent circuit is selected as the equivalent circuit model of lithium battery in this paper.In this paper, the LS algorithm of moving exponential window is proposed to identify the equivalent circuit model parameters of lithium battery online, and finally the SOC is estimated by particle filter algorithm.Simulation and experiments verify that the LS algorithm using the moving exponential window in the vehicle lithium battery can identify the parameters of the equivalent circuit model with high accuracy, and the SOC estimation accuracy is improved.
作者 谢臻杰 林琼斌 詹银 陈斐泓 XIE Zhen-jie;LIN Qiong-bin;ZHAN Yin;CHEN Fei-hong(School of Electrical Engineering and Automation Fuzhou University Fuzhou 350108,China;Power Construction Corporation of China Fujian Electric Power Survey Design Institute Co.Ltd.,Fuzhou 350003,China)
出处 《电气开关》 2022年第6期36-40,共5页 Electric Switchgear
基金 福建省自然科学基金(2021J01637)。
关键词 新能源汽车 参数辨识 最小二乘法 粒子滤波 new energy vehicle parameter identification recursive least squares method particle filter
  • 相关文献

参考文献5

二级参考文献35

  • 1魏学哲,邹广楠,孙泽昌.燃料电池汽车中电池建模及其参数估计[J].电源技术,2004,28(10):605-608. 被引量:19
  • 2林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:199
  • 3林成涛,仇斌,陈全世.电流输入电动汽车电池等效电路模型的比较[J].机械工程学报,2005,41(12):76-81. 被引量:59
  • 4何洪文,余晓江.电动车辆动力电池的性能评价[J].吉林大学学报(工学版),2006,36(5):659-663. 被引量:20
  • 5雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160. 被引量:34
  • 6Rahimi-Eichi H, Ojha U, Baronti F, et al. Battery management system : an overview of its application in the smart grid and electric vehicles [ J ]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16.
  • 7Rezvanizaniani S M, Liu Z C, Chen Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124.
  • 8Seaman A, Dao T S, Mcphee J. A survey of mathematics-based equivalent circuit and electrochemical battery models for hybrid and electric vehicle simulation [J]. Journal of Power Sources, 2014, 256: 410-423.
  • 9Hu Y, Yurkovich S, Guezennec Y, et al. A technique for dynamic battery model identification in automotive applications using linear parameter varying structures [ J 1. Control Engineering Practice, 2009, 17(10): 1190-1201.
  • 10Sun Fengchun, Xiong Rui, He Hongwen, et al. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries [ J ]. Applied Energy, 2012, 96: 378-386.

共引文献128

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部