期刊文献+

面向不确定数据的序数回归算法 被引量:1

Ordinal regression based on uncertain data
下载PDF
导出
摘要 现有的序数回归方法能够利用先验的有序信息获得比一般多分类方法更加优越的性能,但忽略了仪器不精密和环境扰动等因素产生的复杂不确定性数据。针对序数回归中数据存在的不确定信息问题,基于最大间隔原理,构建面向不确定数据的支持向量序数回归模型。实验结果表明,模型可以减少不确定数据对决策边界的影响,增强学习模型的鲁棒性。 Ordinal regression can predict ordered multi-class results for discrete and ordered data.Although the existing ordinal regression methods can use the prior ordered information to obtain better performance than the general multi-class methods,they ignore the complex uncertain data generated by instrument imprecision and environmental disturbance.To solve the problem of uncertain data in ordinal regression,a support vector ordinal regression model for uncertain data was constructed based on the principle of maximum interval.Experimental results show that the model can reduce the influence of uncertain data on decision boundary and enhance the robustness of the learning model.
作者 李晰 肖燕珊 刘波 LI Xi;XIAO Yan-shan;LIU Bo(School of Computer,Guangdong University of Technology,Guangzhou 510006,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机工程与设计》 北大核心 2023年第1期174-181,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(61672169)。
关键词 机器学习 多分类学习 不确定数据 序数回归 有序信息 最大间隔原理 支持向量机 machine learning multi-class learning uncertain data ordinal regression ordered data maximum interval support vector machine
  • 相关文献

参考文献3

二级参考文献26

  • 1Herbrich R, Graepel T, Obermayer K. Support vector learn- ing for ordinal regression[ C]//The 9th International Con- ference on Artificial Neural Networks. 1999:97-102.
  • 2Wu Hong, Lu Hanqing, Ma Songde. A practical SVM-based algorithm for ordinal regression in image retrieval [ C ]// Proceedings of the 1 l th ACM International Conference on Multimedia. 2003:612-621.
  • 3Zhang Daoqiang, Wang Yaping, Zhou Luping, et al. Mul- timodal classification of Alzheimer' s disease and mild cog- nitive impairment [J]. Neuroimage, 2011,55 (3) : 856- 867.
  • 4Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images [ C ]// 2010 20th International Conference on Pattern Recognition (ICPR). 2010:3396-3399.
  • 5Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[ C]//2011 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). 2011:585-592.
  • 6Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[ C ]//Proceedings of the 12th International Symposium on Foundations of Intelli- gent Systems. 2000:426-434.
  • 7Frank E, Hall M. A simple approach to ordinal classifica- tion [ C ]//Proceedings of the 12th European Conference on Machine Learning. 2001 : 145-156.
  • 8Cardoso J S, Da Costa J F P. Learning to classify ordinal data: The data replication method [ J ]. Journal of Machine Learning Research, 2007, 8(8) : 1393-1429.
  • 9Shashua A, Levin A. Ranking with large margin principle: Two approaches [ C ]// Advances in Neural Information Processing Systems. 2002:937-944.
  • 10Sun Bingyu, Li Jiuyong, Wu D D, et al. Kernel discrimi- nant learning for ordinal regression[ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22 (6) : 906- 910.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部